Andrea Pati, Max Hasenzahl, Suad Jakirlic, Christian Hasse
{"title":"内燃机压缩行程中活塞边界层演化的大涡模拟","authors":"Andrea Pati, Max Hasenzahl, Suad Jakirlic, Christian Hasse","doi":"10.1007/s10494-025-00649-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work examines the momentum boundary layer evolution on the piston top of the Darmstadt optically accessible Internal Combustion Engine (ICE). For this purpose, a 3D-CFD wall-resolved Large Eddy Simulation (LES) under motored conditions was deployed. The piston wall is resolved down to 25 <span>\\(\\upmu\\)</span>m, corresponding to <span>\\({y^ + } < 1\\)</span>. For statistical purposes and to compare with experimental data, 33 consecutive engine cycles are simulated. A large-scale tumble motion characterizes the flow field. This flow impinges on the piston on the exhaust side, it moves along the flat piston wall and detaches on the intake side. The near-wall velocities of the simulations align well with the experiment. Analysis revealed regions of Favorable Pressure Gradient (FPG) on the exhaust side and Adverse Pressure Gradient (APG) on the intake side, separated by a sharp pressure inversion zone. The near-wall flow accelerates and then decelerates until detachment. Analysis of the non-dimensional <span>\\({u^ + } - {y^ + }\\)</span> profiles reveals the absence of a logarithmic region in the boundary layer. This scaling procedure is sensitive to thermo-physical properties like density and viscosity that vary across the boundary layer, which complicates comparisons with canonical studies. The shape factor of the boundary layer suggests a fully turbulent state despite the low momentum thickness-based Reynolds number. The boundary layer height increases from the exhaust towards the intake side, especially in the presence of strong pressure gradients. Pressure gradients acting perpendicular to the boundary layer are observed. The comparison of ensemble-averaged and single-cycle instantaneous data shows high levels of cyclic fluctuations.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 4","pages":"1269 - 1295"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00649-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Large Eddy Simulation of the Piston Boundary Layer Evolution During the Compression Stroke in a Motored Internal Combustion Engine\",\"authors\":\"Andrea Pati, Max Hasenzahl, Suad Jakirlic, Christian Hasse\",\"doi\":\"10.1007/s10494-025-00649-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work examines the momentum boundary layer evolution on the piston top of the Darmstadt optically accessible Internal Combustion Engine (ICE). For this purpose, a 3D-CFD wall-resolved Large Eddy Simulation (LES) under motored conditions was deployed. The piston wall is resolved down to 25 <span>\\\\(\\\\upmu\\\\)</span>m, corresponding to <span>\\\\({y^ + } < 1\\\\)</span>. For statistical purposes and to compare with experimental data, 33 consecutive engine cycles are simulated. A large-scale tumble motion characterizes the flow field. This flow impinges on the piston on the exhaust side, it moves along the flat piston wall and detaches on the intake side. The near-wall velocities of the simulations align well with the experiment. Analysis revealed regions of Favorable Pressure Gradient (FPG) on the exhaust side and Adverse Pressure Gradient (APG) on the intake side, separated by a sharp pressure inversion zone. The near-wall flow accelerates and then decelerates until detachment. Analysis of the non-dimensional <span>\\\\({u^ + } - {y^ + }\\\\)</span> profiles reveals the absence of a logarithmic region in the boundary layer. This scaling procedure is sensitive to thermo-physical properties like density and viscosity that vary across the boundary layer, which complicates comparisons with canonical studies. The shape factor of the boundary layer suggests a fully turbulent state despite the low momentum thickness-based Reynolds number. The boundary layer height increases from the exhaust towards the intake side, especially in the presence of strong pressure gradients. Pressure gradients acting perpendicular to the boundary layer are observed. The comparison of ensemble-averaged and single-cycle instantaneous data shows high levels of cyclic fluctuations.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"114 4\",\"pages\":\"1269 - 1295\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-025-00649-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-025-00649-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00649-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Large Eddy Simulation of the Piston Boundary Layer Evolution During the Compression Stroke in a Motored Internal Combustion Engine
This work examines the momentum boundary layer evolution on the piston top of the Darmstadt optically accessible Internal Combustion Engine (ICE). For this purpose, a 3D-CFD wall-resolved Large Eddy Simulation (LES) under motored conditions was deployed. The piston wall is resolved down to 25 \(\upmu\)m, corresponding to \({y^ + } < 1\). For statistical purposes and to compare with experimental data, 33 consecutive engine cycles are simulated. A large-scale tumble motion characterizes the flow field. This flow impinges on the piston on the exhaust side, it moves along the flat piston wall and detaches on the intake side. The near-wall velocities of the simulations align well with the experiment. Analysis revealed regions of Favorable Pressure Gradient (FPG) on the exhaust side and Adverse Pressure Gradient (APG) on the intake side, separated by a sharp pressure inversion zone. The near-wall flow accelerates and then decelerates until detachment. Analysis of the non-dimensional \({u^ + } - {y^ + }\) profiles reveals the absence of a logarithmic region in the boundary layer. This scaling procedure is sensitive to thermo-physical properties like density and viscosity that vary across the boundary layer, which complicates comparisons with canonical studies. The shape factor of the boundary layer suggests a fully turbulent state despite the low momentum thickness-based Reynolds number. The boundary layer height increases from the exhaust towards the intake side, especially in the presence of strong pressure gradients. Pressure gradients acting perpendicular to the boundary layer are observed. The comparison of ensemble-averaged and single-cycle instantaneous data shows high levels of cyclic fluctuations.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.