This work examines the momentum boundary layer evolution on the piston top of the Darmstadt optically accessible Internal Combustion Engine (ICE). For this purpose, a 3D-CFD wall-resolved Large Eddy Simulation (LES) under motored conditions was deployed. The piston wall is resolved down to 25 \(\upmu\)m, corresponding to \({y^ + } < 1\). For statistical purposes and to compare with experimental data, 33 consecutive engine cycles are simulated. A large-scale tumble motion characterizes the flow field. This flow impinges on the piston on the exhaust side, it moves along the flat piston wall and detaches on the intake side. The near-wall velocities of the simulations align well with the experiment. Analysis revealed regions of Favorable Pressure Gradient (FPG) on the exhaust side and Adverse Pressure Gradient (APG) on the intake side, separated by a sharp pressure inversion zone. The near-wall flow accelerates and then decelerates until detachment. Analysis of the non-dimensional \({u^ + } - {y^ + }\) profiles reveals the absence of a logarithmic region in the boundary layer. This scaling procedure is sensitive to thermo-physical properties like density and viscosity that vary across the boundary layer, which complicates comparisons with canonical studies. The shape factor of the boundary layer suggests a fully turbulent state despite the low momentum thickness-based Reynolds number. The boundary layer height increases from the exhaust towards the intake side, especially in the presence of strong pressure gradients. Pressure gradients acting perpendicular to the boundary layer are observed. The comparison of ensemble-averaged and single-cycle instantaneous data shows high levels of cyclic fluctuations.