LES Modeling of the DLR Generic Single-Cup Spray Combustor: Comparison of Exploratory Category C Jet Fuels

IF 2 3区 工程技术 Q3 MECHANICS
Arvid Åkerblom, Christer Fureby
{"title":"LES Modeling of the DLR Generic Single-Cup Spray Combustor: Comparison of Exploratory Category C Jet Fuels","authors":"Arvid Åkerblom,&nbsp;Christer Fureby","doi":"10.1007/s10494-025-00653-8","DOIUrl":null,"url":null,"abstract":"<div><p>The combustion of conventional Jet A, alongside two alternative jet fuels, C1 and C5, is simulated with Large Eddy Simulations (LES) in a generic single-cup spray combustor during idle and cruise conditions. The spray is modeled using Lagrangian particle tracking and the combustion chemistry of each fuel is modeled by skeletal reaction mechanisms. The volatility and atomizability of each fuel directly affect the spray penetration depth, with Jet A having the longest spray and C5 the shortest. All fuels have qualitatively similar flames at idle conditions, but the Jet A flame is relatively lifted at cruise conditions. C1 and C5 have similar flames despite different spray lengths, likely due to the rapid breakup of C1. The fuels produce different emission profiles, which is connected to their respective H/C ratios, equivalence ratios, and aromatics contents. NO<sub>x</sub> emissions are particularly affected by the mixture fraction in the flame, resulting in high NO<sub>x</sub> emissions for the compact C1 and C5 flames. Thermoacoustic oscillations are observed in all simulations but are strongest for C1 and C5, which we hypothesize is a result of their high volatility.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 4","pages":"1315 - 1339"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00653-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00653-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The combustion of conventional Jet A, alongside two alternative jet fuels, C1 and C5, is simulated with Large Eddy Simulations (LES) in a generic single-cup spray combustor during idle and cruise conditions. The spray is modeled using Lagrangian particle tracking and the combustion chemistry of each fuel is modeled by skeletal reaction mechanisms. The volatility and atomizability of each fuel directly affect the spray penetration depth, with Jet A having the longest spray and C5 the shortest. All fuels have qualitatively similar flames at idle conditions, but the Jet A flame is relatively lifted at cruise conditions. C1 and C5 have similar flames despite different spray lengths, likely due to the rapid breakup of C1. The fuels produce different emission profiles, which is connected to their respective H/C ratios, equivalence ratios, and aromatics contents. NOx emissions are particularly affected by the mixture fraction in the flame, resulting in high NOx emissions for the compact C1 and C5 flames. Thermoacoustic oscillations are observed in all simulations but are strongest for C1 and C5, which we hypothesize is a result of their high volatility.

DLR通用单杯喷雾燃烧器的LES建模:探索性C类喷气燃料的比较
在一个普通的单杯喷射燃烧器中,利用大涡模拟(LES)模拟了传统喷气机A以及两种替代喷气燃料C1和C5在怠速和巡航条件下的燃烧情况。喷雾采用拉格朗日粒子跟踪模型,每种燃料的燃烧化学采用骨架反应机理模型。每种燃料的挥发性和雾化性直接影响喷雾穿透深度,其中A射流喷射时间最长,C5射流喷射时间最短。所有燃料在怠速状态下都有类似的火焰,但Jet A的火焰在巡航状态下相对升起。C1和C5有相似的火焰,尽管喷射长度不同,可能是由于C1的快速分裂。燃料产生不同的排放曲线,这与它们各自的H/C比、当量比和芳烃含量有关。NOx排放特别受火焰中混合物分数的影响,导致紧凑的C1和C5火焰的NOx排放量高。在所有模拟中都观察到热声振荡,但C1和C5最强,我们假设这是它们高挥发性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信