Alessandro Ercole, Daniel Lörstad, Christer Fureby
{"title":"Large Eddy Simulations of a Turbulent Premixed Swirling Flame with Finite-Rate Chemistry and Flame-Wrinkling Turbulent Combustion Models","authors":"Alessandro Ercole, Daniel Lörstad, Christer Fureby","doi":"10.1007/s10494-025-00652-9","DOIUrl":null,"url":null,"abstract":"<div><p>Lean, premixed, swirl-stabilized flames are widely used in modern Dry Low Emissions gas turbine combustors; however, the turbulent combustion process under those conditions is known to be extremely sensitive and prone to instabilities. Numerical simulations can be a valuable tool in predicting the effects of alternative fuels; however, the sensitivity of the results to different models ought to be outlined. In this work, we present the results of Large Eddy Simulations performed on the CECOST burner with both Finite Rate Chemistry and Flamelet Progress Variable combustion models, non-adiabatic boundary conditions, and radiation modeling. The results highlight a surprising sensitivity of the simulation results in terms of mean fields, flame macrostructure, and flame dynamics. We discuss the model effects on the coupling mechanisms between turbulence and combustion, e.g., thermal expansion, and we conclude that, in particularly sensitive cases, they are capable of locally altering the flowfield to the extent it influences key flow structures on which flame stabilization relies. Additionally, the interaction between the smallest resolved scales of turbulence and the flame front is also affected, resulting in distinct flame dynamics.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 4","pages":"1377 - 1404"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00652-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00652-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lean, premixed, swirl-stabilized flames are widely used in modern Dry Low Emissions gas turbine combustors; however, the turbulent combustion process under those conditions is known to be extremely sensitive and prone to instabilities. Numerical simulations can be a valuable tool in predicting the effects of alternative fuels; however, the sensitivity of the results to different models ought to be outlined. In this work, we present the results of Large Eddy Simulations performed on the CECOST burner with both Finite Rate Chemistry and Flamelet Progress Variable combustion models, non-adiabatic boundary conditions, and radiation modeling. The results highlight a surprising sensitivity of the simulation results in terms of mean fields, flame macrostructure, and flame dynamics. We discuss the model effects on the coupling mechanisms between turbulence and combustion, e.g., thermal expansion, and we conclude that, in particularly sensitive cases, they are capable of locally altering the flowfield to the extent it influences key flow structures on which flame stabilization relies. Additionally, the interaction between the smallest resolved scales of turbulence and the flame front is also affected, resulting in distinct flame dynamics.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.