Applied and Computational Harmonic Analysis最新文献

筛选
英文 中文
A divide-and-conquer algorithm for distributed optimization on networks 网络分布式优化的分而治之算法
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2024-01-02 DOI: 10.1016/j.acha.2023.101623
Nazar Emirov , Guohui Song , Qiyu Sun
{"title":"A divide-and-conquer algorithm for distributed optimization on networks","authors":"Nazar Emirov ,&nbsp;Guohui Song ,&nbsp;Qiyu Sun","doi":"10.1016/j.acha.2023.101623","DOIUrl":"10.1016/j.acha.2023.101623","url":null,"abstract":"<div><p>In this paper, we consider networks with topologies described by some connected undirected graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> and with some agents (fusion centers) equipped with processing power and local peer-to-peer communication, and optimization problem <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>⁡</mo><mo>{</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>V</mi></mrow></msub><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>}</mo></math></span> with local objective functions <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> depending only on neighboring variables of the vertex <span><math><mi>i</mi><mo>∈</mo><mi>V</mi></math></span>. We introduce a divide-and-conquer algorithm to solve the above optimization problem in a distributed and decentralized manner. The proposed divide-and-conquer algorithm has exponential convergence, its computational cost is almost linear with respect to the size of the network, and it can be fully implemented at fusion centers of the network. In addition, our numerical demonstrations indicate that the proposed divide-and-conquer algorithm has superior performance than popular decentralized optimization methods in solving the least squares problem, both with and without the <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> penalty, and exhibits great performance on networks equipped with asynchronous local peer-to-peer communication.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101623"},"PeriodicalIF":2.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139076847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the eigenvalue distribution of spatio-spectral limiting operators in higher dimensions 论高维空间谱限制算子的特征值分布
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-12-13 DOI: 10.1016/j.acha.2023.101620
Arie Israel, Azita Mayeli
{"title":"On the eigenvalue distribution of spatio-spectral limiting operators in higher dimensions","authors":"Arie Israel,&nbsp;Azita Mayeli","doi":"10.1016/j.acha.2023.101620","DOIUrl":"10.1016/j.acha.2023.101620","url":null,"abstract":"<div><p><span>Prolate spheroidal wave functions are an orthogonal family of bandlimited functions on </span><span><math><mi>R</mi></math></span><span><span> that have the highest concentration within a specific time interval. They are also identified as the </span>eigenfunctions of a time-frequency limiting operator (TFLO), and the associated eigenvalues belong to the interval </span><span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span><span>. Previous work has studied the asymptotic distribution and clustering behavior of the TFLO eigenvalues.</span></p><p>In this paper, we extend these results to multiple dimensions. We prove estimates on the eigenvalues of a <em>spatio-spectral limiting operator</em> (SSLO) on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, which is an alternating product of projection operators associated to given spatial and frequency domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span>. If one of the domains is a hypercube<span><span>, and the other domain is convex body satisfying a </span>symmetry condition, we derive quantitative bounds on the distribution of the SSLO eigenvalues in the interval </span></span><span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>.</p><p><span>To prove our results, we design an orthonormal system of wave packets in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> that are highly concentrated in the spatial and frequency domains. We show that these wave packets are “approximate eigenfunctions” of a spatio-spectral limiting operator. To construct the wave packets, we use a variant of the Coifman-Meyer local sine basis for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span><span>, and we lift the basis to higher dimensions using a tensor product.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101620"},"PeriodicalIF":2.5,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138657597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-frequency analysis on flat tori and Gabor frames in finite dimensions 有限维平面环和 Gabor 框架的时频分析
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-12-12 DOI: 10.1016/j.acha.2023.101622
L.D. Abreu , P. Balazs , N. Holighaus , F. Luef , M. Speckbacher
{"title":"Time-frequency analysis on flat tori and Gabor frames in finite dimensions","authors":"L.D. Abreu ,&nbsp;P. Balazs ,&nbsp;N. Holighaus ,&nbsp;F. Luef ,&nbsp;M. Speckbacher","doi":"10.1016/j.acha.2023.101622","DOIUrl":"10.1016/j.acha.2023.101622","url":null,"abstract":"<div><p>We provide the foundations of a Hilbert space theory for the short-time Fourier transform (STFT) where the flat tori <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><mi>Z</mi><mo>×</mo><mi>N</mi><mi>Z</mi><mo>)</mo><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span> act as phase spaces. We work on an <em>N</em>-dimensional subspace <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> of distributions periodic in time and frequency in the dual <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of the Feichtinger algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and equip it with an inner product. To construct the Hilbert space <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> we apply a suitable double periodization operator to <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. On <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>, the STFT is applied as the usual STFT defined on <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This STFT is a continuous extension of the finite discrete Gabor transform from the lattice onto the entire flat torus. As such, sampling theorems on flat tori lead to Gabor frames in finite dimensions. For Gaussian windows, one is lead to spaces of analytic functions and the construction allows to prove a necessary and sufficient Nyquist rate type result, which is the analogue, for Gabor frames in finite dimensions, of a well known result of Lyubarskii and Seip-Wallstén for Gabor frames with Gaussian windows and which, for <em>N</em> odd, produces an explicit <em>full spark Gabor frame</em>. The compactness of the phase space, the finite dimension of the signal spaces and our sampling theorem offer practical advantages in some applications. We illustrate this by discussing a problem of current research interest: recovering signals from the zeros of their noisy spectrograms.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101622"},"PeriodicalIF":2.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520323001094/pdfft?md5=a748cc66b45e71833f86016f2331a024&pid=1-s2.0-S1063520323001094-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laplace-Beltrami operator on the orthogonal group in ambient (Euclidean) coordinates 环境(欧几里得)坐标正交群上的拉普拉斯-贝尔特拉米算子
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-12-12 DOI: 10.1016/j.acha.2023.101619
Petre Birtea, Ioan Caşu, Dan Comănescu
{"title":"Laplace-Beltrami operator on the orthogonal group in ambient (Euclidean) coordinates","authors":"Petre Birtea,&nbsp;Ioan Caşu,&nbsp;Dan Comănescu","doi":"10.1016/j.acha.2023.101619","DOIUrl":"10.1016/j.acha.2023.101619","url":null,"abstract":"<div><p><span>Using the embedded gradient vector field method (see P. Birtea, D. Comănescu (2015) </span><span>[7]</span><span><span>), we present a general formula for the Laplace-Beltrami operator defined on a constraint manifold, written in the ambient coordinates. Regarding the orthogonal group as a constraint </span>submanifold<span> of the Euclidean space of </span></span><span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span><span> matrices, we give an explicit formula for the Laplace-Beltrami operator on the orthogonal group using the ambient Euclidean coordinates. We apply this new formula for some relevant functions.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101619"},"PeriodicalIF":2.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spline manipulations for empirical mode decomposition (EMD) on bounded intervals and beyond 经验模态分解(EMD)在有界区间及以外的样条操作
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-12-05 DOI: 10.1016/j.acha.2023.101621
Charles K. Chui , Wenjie He
{"title":"Spline manipulations for empirical mode decomposition (EMD) on bounded intervals and beyond","authors":"Charles K. Chui ,&nbsp;Wenjie He","doi":"10.1016/j.acha.2023.101621","DOIUrl":"10.1016/j.acha.2023.101621","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Empirical mode decomposition (EMD), introduced by N.E. Huang et al. in 1998, is perhaps the most popular data-driven computational scheme for the decomposition of a non-stationary signal or time series &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, with time-domain &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, into finitely many oscillatory components &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, called &lt;em&gt;intrinsic mode functions&lt;/em&gt; (IMFs), and some “almost monotone” remainder &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, called the &lt;em&gt;trend&lt;/em&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The core of EMD is the iterative “&lt;em&gt;sifting process&lt;/em&gt;” applied to each function &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; to compute &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, for &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, with trend &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;. For the computation of each IMF, the sifting process depends on cubic spline interpolation of the local maxima and local minima for computing the upper and lower envelopes, respectively, and on subtracting the mean of the two envelopes from the result of the previous iterative step. Since it is not feasible to search for all local extrema in the entire time-domain &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;, implementation of the sifting process is commonly performed on some desired truncated bounded interval &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The main objective of this paper is to introduce and develop four “&lt;em&gt;cubic spline manipulation engines&lt;/em&gt;&lt;span&gt;”, called “quasi-interpolation (QI)”, “enhanced quasi-interpolation (EQI)”, “local interpol","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101621"},"PeriodicalIF":2.5,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138491833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates on learning rates for multi-penalty distribution regression 多惩罚分布回归的学习率估计
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-11-23 DOI: 10.1016/j.acha.2023.101609
Zhan Yu , Daniel W.C. Ho
{"title":"Estimates on learning rates for multi-penalty distribution regression","authors":"Zhan Yu ,&nbsp;Daniel W.C. Ho","doi":"10.1016/j.acha.2023.101609","DOIUrl":"10.1016/j.acha.2023.101609","url":null,"abstract":"<div><p><span><span>This paper is concerned with functional learning by utilizing two-stage sampled distribution regression. We study a multi-penalty regularization algorithm for distribution regression in the framework of learning theory. The algorithm aims at regressing to real-valued outputs from probability measures. The theoretical analysis of distribution regression is far from maturity and quite challenging since only second-stage samples are observable in practical settings. In our algorithm, to transform information of distribution samples, we embed the distributions to a reproducing kernel </span>Hilbert space </span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> associated with Mercer kernel <em>K</em> via mean embedding technique. One of the primary contributions of this work is the introduction of a novel multi-penalty regularization algorithm, which is able to capture more potential features of distribution regression. Optimal learning rates of the algorithm are obtained under mild conditions. The work also derives learning rates for distribution regression in the hard learning scenario <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>∉</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span>, which has not been explored in the existing literature. Moreover, we propose a new distribution-regression-based distributed learning algorithm to face large-scale data or information challenges arising from distribution data. The optimal learning rates are derived for the distributed learning algorithm. By providing new algorithms and showing their learning rates, the work improves the existing literature in various aspects.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101609"},"PeriodicalIF":2.5,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138297364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dilational symmetries of decomposition and coorbit spaces 分解与共轨道空间的扩张对称性
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-11-17 DOI: 10.1016/j.acha.2023.101610
Hartmut Führ , Reihaneh Raisi-Tousi
{"title":"Dilational symmetries of decomposition and coorbit spaces","authors":"Hartmut Führ ,&nbsp;Reihaneh Raisi-Tousi","doi":"10.1016/j.acha.2023.101610","DOIUrl":"10.1016/j.acha.2023.101610","url":null,"abstract":"<div><p><span>We investigate the invariance properties of general wavelet coorbit spaces and Besov-type </span>decomposition spaces under dilations by matrices. We show that these matrices can be characterized by quasi-isometry properties with respect to a certain metric in frequency domain. We formulate versions of this phenomenon both for the decomposition and coorbit space settings.</p><p>We then apply the general results to a particular class of dilation groups, the so-called shearlet dilation groups. We present a general, algebraic characterization of matrices that are coorbit compatible with a given shearlet dilation group. We explicitly determine the groups of compatible dilations, for a variety of concrete examples.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101610"},"PeriodicalIF":2.5,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image denoising based on a variable spatially exponent PDE 基于可变空间指数偏微分方程的图像去噪
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-11-10 DOI: 10.1016/j.acha.2023.101608
Amine Laghrib, Lekbir Afraites
{"title":"Image denoising based on a variable spatially exponent PDE","authors":"Amine Laghrib,&nbsp;Lekbir Afraites","doi":"10.1016/j.acha.2023.101608","DOIUrl":"10.1016/j.acha.2023.101608","url":null,"abstract":"<div><p>Image denoising is always considered an important area of image processing. In this work, we address a new PDE-based model for image denoising that have been contaminated by multiplicative noise<span>, specially the Speckle one. We propose a new class of PDEs whose nonlinear structure depends on a spatially tensor depending quantity attached to the desired solution, which takes into account the gray level information by introducing a gray level indicator function in the diffusion coefficient<span>. We give some theoretical results, discretization and also stability condition for the suggested model. Finally, we carry out some numerical results to approve the effectiveness of our model by comparing the results obtained with some competitive models.</span></span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101608"},"PeriodicalIF":2.5,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92158652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the intermediate value property of spectra for a class of Moran spectral measures 关于一类Moran谱测度的谱的中值性质
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-11-08 DOI: 10.1016/j.acha.2023.101606
Jinjun Li, Zhiyi Wu
{"title":"On the intermediate value property of spectra for a class of Moran spectral measures","authors":"Jinjun Li,&nbsp;Zhiyi Wu","doi":"10.1016/j.acha.2023.101606","DOIUrl":"10.1016/j.acha.2023.101606","url":null,"abstract":"<div><p>We prove that the Beurling dimensions of the spectra for a class of Moran spectral measures are in 0 and their upper entropy dimensions. Moreover, for such a Moran spectral measure <em>μ</em>, we show that the Beurling dimension for the spectra of <em>μ</em> has the intermediate value property: let <em>t</em> be any value in 0 and the upper entropy dimension of <em>μ</em>, then there exists a spectrum whose Beurling dimension is <em>t</em><span>. In particular, this result settles affirmatively a conjecture involving spectral Bernoulli convolution in Fu et al. (2018) </span><span>[20]</span>. Furthermore, we prove that the set of the spectra whose Beurling dimensions are equal to any fixed value in 0 and <span><math><msub><mrow><mover><mrow><mi>dim</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>e</mi></mrow></msub><mspace></mspace><mi>μ</mi></math></span> has the cardinality of the continuum.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101606"},"PeriodicalIF":2.5,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71516669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The metaplectic action on modulation spaces 调制空间上的变形作用
IF 2.5 2区 数学
Applied and Computational Harmonic Analysis Pub Date : 2023-11-08 DOI: 10.1016/j.acha.2023.101604
Hartmut Führ , Irina Shafkulovska
{"title":"The metaplectic action on modulation spaces","authors":"Hartmut Führ ,&nbsp;Irina Shafkulovska","doi":"10.1016/j.acha.2023.101604","DOIUrl":"10.1016/j.acha.2023.101604","url":null,"abstract":"<div><p>We study the mapping properties of metaplectic operators <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mrow><mi>Mp</mi></mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> on modulation spaces of the type <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. Our main result is a full characterization of the pairs <span><math><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> for which the operator <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is <em>(i)</em> well-defined, <em>(ii)</em> bounded. It turns out that these two properties are equivalent, and they entail that <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is a Banach space automorphism. For polynomially bounded weight functions, we provide a simple sufficient criterion to determine whether the well-definedness (boundedness) of <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> transfers to <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101604"},"PeriodicalIF":2.5,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S106352032300091X/pdfft?md5=0769848d44f7ddda38eab0321ccdd78e&pid=1-s2.0-S106352032300091X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72364681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信