EDMD for expanding circle maps and their complex perturbations

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Oscar F. Bandtlow , Wolfram Just , Julia Slipantschuk
{"title":"EDMD for expanding circle maps and their complex perturbations","authors":"Oscar F. Bandtlow ,&nbsp;Wolfram Just ,&nbsp;Julia Slipantschuk","doi":"10.1016/j.acha.2024.101690","DOIUrl":null,"url":null,"abstract":"<div><p>We show that spectral data of the Koopman operator arising from an analytic expanding circle map <em>τ</em> can be effectively calculated using an EDMD-type algorithm combining a collocation method of order <em>m</em> with a Galerkin method of order <em>n</em>. The main result is that if <span><math><mi>m</mi><mo>≥</mo><mi>δ</mi><mi>n</mi></math></span>, where <em>δ</em> is an explicitly given positive number quantifying by how much <em>τ</em> expands concentric annuli containing the unit circle, then the method converges and approximates the spectrum of the Koopman operator, taken to be acting on a space of analytic hyperfunctions, exponentially fast in <em>n</em>. Additionally, these results extend to more general expansive maps on suitable annuli containing the unit circle.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101690"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000678/pdfft?md5=19289db18c6f007b7c00dd403231dfce&pid=1-s2.0-S1063520324000678-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We show that spectral data of the Koopman operator arising from an analytic expanding circle map τ can be effectively calculated using an EDMD-type algorithm combining a collocation method of order m with a Galerkin method of order n. The main result is that if mδn, where δ is an explicitly given positive number quantifying by how much τ expands concentric annuli containing the unit circle, then the method converges and approximates the spectrum of the Koopman operator, taken to be acting on a space of analytic hyperfunctions, exponentially fast in n. Additionally, these results extend to more general expansive maps on suitable annuli containing the unit circle.

扩张圆图及其复扰动的 EDMD
我们的研究表明,由解析扩张圆图产生的库普曼算子的频谱数据可以通过一种 EDMD 型算法有效地计算出来,该算法结合了阶次配位法和阶次 Galerkin 法。主要结果是,如果 ,其中是一个明确给定的正数,量化了包含单位圆的同心圆环的扩展程度,那么该方法就能以指数级的速度收敛并逼近作用于解析超函数空间的库普曼算子谱。此外,这些结果还可以扩展到包含单位圆的合适环面上的更一般的扩张映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信