Afonso S. Bandeira , Dmitriy Kunisky , Dustin G. Mixon , Xinmeng Zeng
{"title":"On the concentration of Gaussian Cayley matrices","authors":"Afonso S. Bandeira , Dmitriy Kunisky , Dustin G. Mixon , Xinmeng Zeng","doi":"10.1016/j.acha.2024.101694","DOIUrl":null,"url":null,"abstract":"<div><p>Given a finite group, we study the Gaussian series of the matrices in the image of its left regular representation. We propose such random matrices as a benchmark for improvements to the noncommutative Khintchine inequality, and we highlight an application to the matrix Spencer conjecture.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101694"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032400071X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Given a finite group, we study the Gaussian series of the matrices in the image of its left regular representation. We propose such random matrices as a benchmark for improvements to the noncommutative Khintchine inequality, and we highlight an application to the matrix Spencer conjecture.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.