短时傅立叶变换和超振荡

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Daniel Alpay , Antonino De Martino , Kamal Diki , Daniele C. Struppa
{"title":"短时傅立叶变换和超振荡","authors":"Daniel Alpay ,&nbsp;Antonino De Martino ,&nbsp;Kamal Diki ,&nbsp;Daniele C. Struppa","doi":"10.1016/j.acha.2024.101689","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we investigate new results on the theory of superoscillations using time-frequency analysis tools and techniques such as the short-time Fourier transform (STFT) and the Zak transform. We start by studying how the short-time Fourier transform acts on superoscillation sequences. We then apply the supershift property to prove that the short-time Fourier transform preserves the superoscillatory behavior by taking the limit. It turns out that these computations lead to interesting connections with various features of time-frequency analysis such as Gabor spaces, Gabor kernels, Gabor frames, 2D-complex Hermite polynomials, and polyanalytic functions. We treat different cases depending on the choice of the window function moving from the general case to more specific cases involving the Gaussian and the Hermite windows. We consider also an evolution problem with an initial datum given by superoscillation multiplied by the time-frequency shifts of a generic window function. Finally, we compute the action of STFT on the approximating sequences with a given Hermite window.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101689"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000666/pdfft?md5=96fd7a993bcf9429a7aae8f923cc37d9&pid=1-s2.0-S1063520324000666-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Short-time Fourier transform and superoscillations\",\"authors\":\"Daniel Alpay ,&nbsp;Antonino De Martino ,&nbsp;Kamal Diki ,&nbsp;Daniele C. Struppa\",\"doi\":\"10.1016/j.acha.2024.101689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we investigate new results on the theory of superoscillations using time-frequency analysis tools and techniques such as the short-time Fourier transform (STFT) and the Zak transform. We start by studying how the short-time Fourier transform acts on superoscillation sequences. We then apply the supershift property to prove that the short-time Fourier transform preserves the superoscillatory behavior by taking the limit. It turns out that these computations lead to interesting connections with various features of time-frequency analysis such as Gabor spaces, Gabor kernels, Gabor frames, 2D-complex Hermite polynomials, and polyanalytic functions. We treat different cases depending on the choice of the window function moving from the general case to more specific cases involving the Gaussian and the Hermite windows. We consider also an evolution problem with an initial datum given by superoscillation multiplied by the time-frequency shifts of a generic window function. Finally, we compute the action of STFT on the approximating sequences with a given Hermite window.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101689\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000666/pdfft?md5=96fd7a993bcf9429a7aae8f923cc37d9&pid=1-s2.0-S1063520324000666-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000666\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000666","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用短时傅里叶变换(STFT)和扎克变换等时频分析工具和技术,研究超振荡理论的新成果。我们首先研究了短时傅里叶变换如何作用于超稳定序列。然后,我们应用超移位特性,证明短时傅里叶变换通过取极限保留了超振荡行为。事实证明,这些计算与时频分析的各种特征有着有趣的联系,如 Gabor 空间、Gabor 核、Gabor 框架、二维复赫尔米特多项式和多解析函数。我们根据窗口函数的选择来处理不同的情况,从一般情况到涉及高斯和赫米特窗口的更具体情况。我们还考虑了一个演化问题,其初始数据由超振荡乘以一般窗函数的时频偏移给出。最后,我们计算了 STFT 对给定 Hermite 窗口的近似序列的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-time Fourier transform and superoscillations

In this paper we investigate new results on the theory of superoscillations using time-frequency analysis tools and techniques such as the short-time Fourier transform (STFT) and the Zak transform. We start by studying how the short-time Fourier transform acts on superoscillation sequences. We then apply the supershift property to prove that the short-time Fourier transform preserves the superoscillatory behavior by taking the limit. It turns out that these computations lead to interesting connections with various features of time-frequency analysis such as Gabor spaces, Gabor kernels, Gabor frames, 2D-complex Hermite polynomials, and polyanalytic functions. We treat different cases depending on the choice of the window function moving from the general case to more specific cases involving the Gaussian and the Hermite windows. We consider also an evolution problem with an initial datum given by superoscillation multiplied by the time-frequency shifts of a generic window function. Finally, we compute the action of STFT on the approximating sequences with a given Hermite window.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信