Computing sparse Fourier sum of squares on finite abelian groups in quasi-linear time

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Jianting Yang , Ke Ye , Lihong Zhi
{"title":"Computing sparse Fourier sum of squares on finite abelian groups in quasi-linear time","authors":"Jianting Yang ,&nbsp;Ke Ye ,&nbsp;Lihong Zhi","doi":"10.1016/j.acha.2024.101686","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of verifying the nonnegativity of a function on a finite abelian group is a long-standing challenging problem. The basic representation theory of finite groups indicates that a function <em>f</em> on a finite abelian group <em>G</em> can be written as a linear combination of characters of irreducible representations of <em>G</em> by <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>χ</mi><mo>∈</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msub><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>χ</mi><mo>)</mo><mi>χ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is the dual group of <em>G</em> consisting of all characters of <em>G</em> and <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>χ</mi><mo>)</mo></math></span> is the <em>Fourier coefficient</em> of <em>f</em> at <span><math><mi>χ</mi><mo>∈</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>. In this paper, we show that by performing the fast (inverse) Fourier transform, we are able to compute a sparse Fourier sum of squares (FSOS) certificate of <em>f</em> on a finite abelian group <em>G</em> with complexity that is quasi-linear in the order of <em>G</em> and polynomial in the FSOS sparsity of <em>f</em>. Moreover, for a nonnegative function <em>f</em> on a finite abelian group <em>G</em> and a subset <span><math><mi>S</mi><mo>⊆</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, we give a lower bound of the constant <em>M</em> such that <span><math><mi>f</mi><mo>+</mo><mi>M</mi></math></span> admits an FSOS supported on <em>S</em>. We demonstrate the efficiency of the proposed algorithm by numerical experiments on various abelian groups of orders up to 10<sup>7</sup>. As applications, we also solve some combinatorial optimization problems and the sum of Hermitian squares (SOHS) problem by sparse FSOS.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101686"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000630","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of verifying the nonnegativity of a function on a finite abelian group is a long-standing challenging problem. The basic representation theory of finite groups indicates that a function f on a finite abelian group G can be written as a linear combination of characters of irreducible representations of G by f(x)=χGˆfˆ(χ)χ(x), where Gˆ is the dual group of G consisting of all characters of G and fˆ(χ) is the Fourier coefficient of f at χGˆ. In this paper, we show that by performing the fast (inverse) Fourier transform, we are able to compute a sparse Fourier sum of squares (FSOS) certificate of f on a finite abelian group G with complexity that is quasi-linear in the order of G and polynomial in the FSOS sparsity of f. Moreover, for a nonnegative function f on a finite abelian group G and a subset SGˆ, we give a lower bound of the constant M such that f+M admits an FSOS supported on S. We demonstrate the efficiency of the proposed algorithm by numerical experiments on various abelian groups of orders up to 107. As applications, we also solve some combinatorial optimization problems and the sum of Hermitian squares (SOHS) problem by sparse FSOS.

以准线性时间计算有限无边群上的稀疏傅立叶平方和
验证有限无穷群上函数的非负性是一个长期存在的难题。有限群的基本表示理论表明,有限无穷群 G 上的函数 f 可以写成 G 的不可还原表示的字符的线性组合,即 f(x)=∑χ∈Gˆfˆ(χ)χ(x) 、其中,Gˆ 是由 G 的所有字符组成的 G 的对偶群,fˆ(χ) 是 f 在 χ∈Gˆ 处的傅里叶系数。本文表明,通过执行快速(逆)傅立叶变换,我们能够计算有限无性组 G 上 f 的稀疏傅立叶平方和(FSOS)证书,其复杂度与 G 的阶数呈准线性关系,与 f 的 FSOS 稀疏度呈多项式关系。此外,对于有限无边群 G 上的非负函数 f 和子集 S⊆Gˆ,我们给出了常数 M 的下限,即 f+M 在 S 上支持 FSOS。作为应用,我们还通过稀疏 FSOS 解决了一些组合优化问题和赫米特平方和(SOHS)问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信