Embeddings between Barron spaces with higher-order activation functions

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Tjeerd Jan Heeringa , Len Spek , Felix L. Schwenninger , Christoph Brune
{"title":"Embeddings between Barron spaces with higher-order activation functions","authors":"Tjeerd Jan Heeringa ,&nbsp;Len Spek ,&nbsp;Felix L. Schwenninger ,&nbsp;Christoph Brune","doi":"10.1016/j.acha.2024.101691","DOIUrl":null,"url":null,"abstract":"<div><p>The approximation properties of infinitely wide shallow neural networks heavily depend on the choice of the activation function. To understand this influence, we study embeddings between Barron spaces with different activation functions. These embeddings are proven by providing push-forward maps on the measures <em>μ</em> used to represent functions <em>f</em>. An activation function of particular interest is the rectified power unit (RePU) given by <span><math><msub><mrow><mi>RePU</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span>. For many commonly used activation functions, the well-known Taylor remainder theorem can be used to construct a push-forward map, which allows us to prove the embedding of the associated Barron space into a Barron space with a RePU as activation function. Moreover, the Barron spaces associated with the <span><math><msub><mrow><mi>RePU</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> have a hierarchical structure similar to the Sobolev spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101691"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S106352032400068X/pdfft?md5=d7b9ed667155aca5daca913402281afb&pid=1-s2.0-S106352032400068X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032400068X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The approximation properties of infinitely wide shallow neural networks heavily depend on the choice of the activation function. To understand this influence, we study embeddings between Barron spaces with different activation functions. These embeddings are proven by providing push-forward maps on the measures μ used to represent functions f. An activation function of particular interest is the rectified power unit (RePU) given by RePUs(x)=max(0,x)s. For many commonly used activation functions, the well-known Taylor remainder theorem can be used to construct a push-forward map, which allows us to prove the embedding of the associated Barron space into a Barron space with a RePU as activation function. Moreover, the Barron spaces associated with the RePUs have a hierarchical structure similar to the Sobolev spaces Hs.

用高阶激活函数嵌入巴伦空间
无限宽浅层神经网络的逼近特性在很大程度上取决于激活函数的选择。为了了解这种影响,我们研究了具有不同激活函数的巴伦空间之间的嵌入。我们特别感兴趣的激活函数是整流幂单元(RePU),其公式为 RePUs(x)=max(0,x)s。对于许多常用的激活函数,我们可以利用著名的泰勒余数定理来构建一个前推映射,从而证明相关的巴伦空间嵌入到以 RePU 作为激活函数的巴伦空间中。此外,与 RePU 相关的巴伦空间具有与索波列夫空间 Hs 相似的层次结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信