时间序列数据集的局部结构和有效维度

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Monika Dörfler, Franz Luef, Eirik Skrettingland
{"title":"时间序列数据集的局部结构和有效维度","authors":"Monika Dörfler,&nbsp;Franz Luef,&nbsp;Eirik Skrettingland","doi":"10.1016/j.acha.2024.101692","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this paper is to develop novel tools for understanding the local structure of systems of functions, e.g. time-series data points. The proposed tools include a total correlation function, the Cohen class of the data set, the data operator and the average lack of concentration. The Cohen class of the data operator gives a time-frequency representation of the data set. Furthermore, we show that the von Neumann entropy of the data operator captures local features of the data set and that it is related to the notion of effective dimensionality. The accumulated Cohen class of the data operator gives us a low-dimensional representation of the data set and we quantify this in terms of the average lack of concentration and the von Neumann entropy of the data operator and an improvement of the Berezin-Lieb inequality using the projection functional of the data augmentation operator. The framework for our approach is provided by quantum harmonic analysis.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101692"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000691/pdfft?md5=44281e1bf43209bd5a937cf474a8b490&pid=1-s2.0-S1063520324000691-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Local structure and effective dimensionality of time series data sets\",\"authors\":\"Monika Dörfler,&nbsp;Franz Luef,&nbsp;Eirik Skrettingland\",\"doi\":\"10.1016/j.acha.2024.101692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of this paper is to develop novel tools for understanding the local structure of systems of functions, e.g. time-series data points. The proposed tools include a total correlation function, the Cohen class of the data set, the data operator and the average lack of concentration. The Cohen class of the data operator gives a time-frequency representation of the data set. Furthermore, we show that the von Neumann entropy of the data operator captures local features of the data set and that it is related to the notion of effective dimensionality. The accumulated Cohen class of the data operator gives us a low-dimensional representation of the data set and we quantify this in terms of the average lack of concentration and the von Neumann entropy of the data operator and an improvement of the Berezin-Lieb inequality using the projection functional of the data augmentation operator. The framework for our approach is provided by quantum harmonic analysis.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101692\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000691/pdfft?md5=44281e1bf43209bd5a937cf474a8b490&pid=1-s2.0-S1063520324000691-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000691\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000691","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目标是开发新型工具,用于理解函数系统(如时间序列数据点)的局部结构。建议的工具包括总相关函数、数据集的科恩类、数据算子和平均不集中。数据算子的科恩类给出了数据集的时频表示。此外,我们还证明了数据算子的冯-诺依曼熵能捕捉数据集的局部特征,并且与有效维度的概念相关。数据算子的累积科恩类为我们提供了数据集的低维表示,我们通过数据算子的平均不集中度和冯-诺依曼熵以及使用数据增强算子的投影函数对贝雷津-里布不等式的改进来量化这一点。量子谐波分析为我们的方法提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local structure and effective dimensionality of time series data sets

The goal of this paper is to develop novel tools for understanding the local structure of systems of functions, e.g. time-series data points. The proposed tools include a total correlation function, the Cohen class of the data set, the data operator and the average lack of concentration. The Cohen class of the data operator gives a time-frequency representation of the data set. Furthermore, we show that the von Neumann entropy of the data operator captures local features of the data set and that it is related to the notion of effective dimensionality. The accumulated Cohen class of the data operator gives us a low-dimensional representation of the data set and we quantify this in terms of the average lack of concentration and the von Neumann entropy of the data operator and an improvement of the Berezin-Lieb inequality using the projection functional of the data augmentation operator. The framework for our approach is provided by quantum harmonic analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信