{"title":"时间序列数据集的局部结构和有效维度","authors":"Monika Dörfler, Franz Luef, Eirik Skrettingland","doi":"10.1016/j.acha.2024.101692","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this paper is to develop novel tools for understanding the local structure of systems of functions, e.g. time-series data points. The proposed tools include a total correlation function, the Cohen class of the data set, the data operator and the average lack of concentration. The Cohen class of the data operator gives a time-frequency representation of the data set. Furthermore, we show that the von Neumann entropy of the data operator captures local features of the data set and that it is related to the notion of effective dimensionality. The accumulated Cohen class of the data operator gives us a low-dimensional representation of the data set and we quantify this in terms of the average lack of concentration and the von Neumann entropy of the data operator and an improvement of the Berezin-Lieb inequality using the projection functional of the data augmentation operator. The framework for our approach is provided by quantum harmonic analysis.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101692"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000691/pdfft?md5=44281e1bf43209bd5a937cf474a8b490&pid=1-s2.0-S1063520324000691-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Local structure and effective dimensionality of time series data sets\",\"authors\":\"Monika Dörfler, Franz Luef, Eirik Skrettingland\",\"doi\":\"10.1016/j.acha.2024.101692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of this paper is to develop novel tools for understanding the local structure of systems of functions, e.g. time-series data points. The proposed tools include a total correlation function, the Cohen class of the data set, the data operator and the average lack of concentration. The Cohen class of the data operator gives a time-frequency representation of the data set. Furthermore, we show that the von Neumann entropy of the data operator captures local features of the data set and that it is related to the notion of effective dimensionality. The accumulated Cohen class of the data operator gives us a low-dimensional representation of the data set and we quantify this in terms of the average lack of concentration and the von Neumann entropy of the data operator and an improvement of the Berezin-Lieb inequality using the projection functional of the data augmentation operator. The framework for our approach is provided by quantum harmonic analysis.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101692\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000691/pdfft?md5=44281e1bf43209bd5a937cf474a8b490&pid=1-s2.0-S1063520324000691-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000691\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000691","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Local structure and effective dimensionality of time series data sets
The goal of this paper is to develop novel tools for understanding the local structure of systems of functions, e.g. time-series data points. The proposed tools include a total correlation function, the Cohen class of the data set, the data operator and the average lack of concentration. The Cohen class of the data operator gives a time-frequency representation of the data set. Furthermore, we show that the von Neumann entropy of the data operator captures local features of the data set and that it is related to the notion of effective dimensionality. The accumulated Cohen class of the data operator gives us a low-dimensional representation of the data set and we quantify this in terms of the average lack of concentration and the von Neumann entropy of the data operator and an improvement of the Berezin-Lieb inequality using the projection functional of the data augmentation operator. The framework for our approach is provided by quantum harmonic analysis.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.