巴兰姜矩阵问题的下限

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Afonso S. Bandeira , Dustin G. Mixon , Stefan Steinerberger
{"title":"巴兰姜矩阵问题的下限","authors":"Afonso S. Bandeira ,&nbsp;Dustin G. Mixon ,&nbsp;Stefan Steinerberger","doi":"10.1016/j.acha.2024.101696","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the existence of a positive semidefinite matrix <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span> such that any decomposition into rank-1 matrices has to have factors with a large <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span>norm, more precisely<span><span><span><math><munder><mo>∑</mo><mrow><mi>k</mi></mrow></munder><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>=</mo><mi>A</mi><mspace></mspace><mo>⇒</mo><mspace></mspace><munder><mo>∑</mo><mrow><mi>k</mi></mrow></munder><msubsup><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>‖</mo></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≥</mo><mi>c</mi><msqrt><mrow><mi>n</mi></mrow></msqrt><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <em>c</em> is independent of <em>n</em>. This provides a lower bound for the Balan–Jiang matrix problem. The construction is probabilistic.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101696"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lower bound for the Balan–Jiang matrix problem\",\"authors\":\"Afonso S. Bandeira ,&nbsp;Dustin G. Mixon ,&nbsp;Stefan Steinerberger\",\"doi\":\"10.1016/j.acha.2024.101696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the existence of a positive semidefinite matrix <span><math><mi>A</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></math></span> such that any decomposition into rank-1 matrices has to have factors with a large <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span>norm, more precisely<span><span><span><math><munder><mo>∑</mo><mrow><mi>k</mi></mrow></munder><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>=</mo><mi>A</mi><mspace></mspace><mo>⇒</mo><mspace></mspace><munder><mo>∑</mo><mrow><mi>k</mi></mrow></munder><msubsup><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>‖</mo></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≥</mo><mi>c</mi><msqrt><mrow><mi>n</mi></mrow></msqrt><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <em>c</em> is independent of <em>n</em>. This provides a lower bound for the Balan–Jiang matrix problem. The construction is probabilistic.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101696\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000733\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000733","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个正半有限矩阵 A∈Rn×n 的存在性,即任何分解为秩-1 矩阵的矩阵都必须具有较大 ℓ1-norm 的因子,更确切地说∑kxkxk⁎=A⇒∑k‖xk‖12≥cn‖A1,其中 c 与 n 无关。这就为巴兰姜矩阵问题提供了一个下界。这种构造是概率性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower bound for the Balan–Jiang matrix problem

We prove the existence of a positive semidefinite matrix ARn×n such that any decomposition into rank-1 matrices has to have factors with a large 1norm, more preciselykxkxk=Akxk12cnA1, where c is independent of n. This provides a lower bound for the Balan–Jiang matrix problem. The construction is probabilistic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信