Owen McKenney, Joseph Zhu, Tianjun Han, Hilary Bart-Smith
{"title":"Development of a turning control strategy for a bio-inspired underwater vehicle.","authors":"Owen McKenney, Joseph Zhu, Tianjun Han, Hilary Bart-Smith","doi":"10.1088/1748-3190/adf67a","DOIUrl":"10.1088/1748-3190/adf67a","url":null,"abstract":"<p><p>Maneuvering in fish is complex and offers inspiration in the development of the next generation bio-inspired underwater vehicles (BUVs). Balancing desired functionality with minimal mechanical complexity is a challenge in developing a BUV. This study presents a single-actuator turning strategy for the Tunabot, a bio-inspired robotic fish, using asymmetric tail-beat timing to generate turning forces. Biological fish, such as tuna, adjust tail kinematics for maneuverability. Following this principle, the proposed control method modifies stroke duration through a single motor, synchronized by a digital encoder. Experiments were conducted in a tank, using the dorsal-view high-speed video and DeepLabCut motion tracking technology to analyze and quantify turning radius and swimming velocity. A 66% asymmetric difference in tail-beat timing resulted in a turning radius of 1.42 body lengths at a certain base frequency. Scaling laws were developed to reveal the fluid dynamics and predict the turning radius and swimming speed of the Tunabot given known tailbeat frequencies. Power consumption data was gathered for asymmetric maneuvers and compared to their symmetric equivalents. These findings demonstrate that asymmetric tail-beat control enables effective turning without dedicated steering mechanisms, offering novel insights for designing highly maneuverable underwater bio-robots with low power consumption.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144762427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Utaka Kagawa, Jun Hoshina, Yosuke Yamamoto, Hao Liu, Toshiyuki Nakata
{"title":"Bird-inspired flexible tail improves aerodynamic performance of fixed-wing aerial robots.","authors":"Utaka Kagawa, Jun Hoshina, Yosuke Yamamoto, Hao Liu, Toshiyuki Nakata","doi":"10.1088/1748-3190/adf78e","DOIUrl":"10.1088/1748-3190/adf78e","url":null,"abstract":"<p><p>The tail of a bird-or a bird-inspired aerial robot-is an aerodynamically effective structure that enhances efficiency, stability, and manoeuvrability through attitude control and morphing. Optimising the morphology and structure of the tail can further improve the flight performance of such flyers. Inspired by previous studies on bird tails, we designed and developed a flexible tail capable of deforming in a bird-like manner. We investigated the effect of tail flexibility on the flight performance of a bird-inspired aerial robot through wind tunnel experiments and computational fluid dynamic analyses. Our results demonstrate that passive morphing of a tail with appropriate flexibility can adjust the tail surface orientation to direct aerodynamic force forward via pressure at the leading edge, thereby improving the lift-to-drag ratio and overall flight efficiency of the aerial robot. The proposed design also enables tail weight reduction, contributing to improved stability and manoeuvrability. These findings highlight tail flexibility as a key design parameter for improving the performance of bird-inspired aerial robots.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 5","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144849711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vera Felizitas Antonia Hörger, Susanna Labisch, Jan-Henning Dirks
{"title":"Biomimetic Tag Attachment Inspired by the Seal Louse.","authors":"Vera Felizitas Antonia Hörger, Susanna Labisch, Jan-Henning Dirks","doi":"10.1088/1748-3190/adfbb8","DOIUrl":"https://doi.org/10.1088/1748-3190/adfbb8","url":null,"abstract":"<p><p>Satellite telemetry is widely used to study the movements of marine mammals, but current attachment methods for seals typically rely on epoxy adhesives, which pose risks to animal welfare and the marine environment. This study presents a biomimetic, adhesive-free attachment system inspired by the seal louse<i>Echinophthirius horridus</i>, an ectoparasite capable of maintaining a strong grip on seal fur in aquatic conditions. A top-down biomimetic approach was used to abstract key functional principles from the louse's claw morphology and cuticular anchoring structures. These biological features informed the development of a 3D-printed comb-clamp prototype, termed \"TACS\" (Transmitter Attachment Clamp[s]), designed specifically for the hair structure of harbour seals. Microscopy and X-ray microtomography revealed morphological traits such as interlocking setae, directional grooves, and a specialized euplantula, which were functionally integrated into the prototype. Tensile tests on tanned seal fur demonstrated mean maximum retention forces of 4.58 N under dry conditions and 2.42 N under wet conditions. A proof-of-concept trial on a live harbour seal showed successful attachment for up to 50 minutes, without signs of distress or fur damage. The TACS system fulfilled key design criteria: rapid and reversible application, low material weight (<20 g), and strong mechanical retention without the use of adhesives. This study demonstrates the potential of biologically inspired design to provide an environmentally responsible alternative to conventional tagging methods and highlights the relevance of<i>E. horridus</i>as a functional model for bioinspired gripping systems in marine applications.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144857107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and realization of a low-drive bionic frog robot.","authors":"Yichen Chu, Yahui Wang, Mingzheng Bao, Tiancheng Hao, Zhifeng Lv, Xiaohao Li, Tianbiao Yu, Ji Zhao","doi":"10.1088/1748-3190/adf6f7","DOIUrl":"10.1088/1748-3190/adf6f7","url":null,"abstract":"<p><p>This paper presents the design and fabrication of a compact underdriven bionic frog robot, which is inspired by the locomotion stance of a frog. The robot's hind legs were ingeniously built using an underdriven associative 8-bar linkage mechanism with a single motor drive to mimic the swimming motion of a frog. To enhance the robot's biomechanics and locomotor capabilities, the robot's shell was designed to mimic biological features and adjust buoyancy. In addition, the body of the robot has three sealed chambers, which include a module for adjusting its center of gravity, an energy module, and a control and communication module. The robot is equipped with an integrated E30-170T27D transceiver chip specifically designed for wireless communication in shallow water. The Tensilica Xtensa LX6 microprocessor can perform sensor data acquisition and control robotic movements. Prototype experiments demonstrated that the frog robot is capable of achieving stable autonomous swimming and three-dimensional longitudinal movement. This is made possible by using two independently driven hind legs and a center-of-gravity adjustment mechanism. The robot exhibits an average speed of 100 mm s<sup>-1</sup>. Furthermore, owing to its low drive, high bionic, and small design, the robot minimized perturbations to the water environment during underwater movement. This allows a stable water environment for underwater measurements and improves the overall endurance time. This study improves the overall endurance and provides a theoretical basis for the design of underdrive mechanisms for future bionic underwater robots.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144769390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yidong Xu, Gang Chen, Chenguang Yang, Chuanyu Wu, Huosheng Hu
{"title":"Seeker-M: A bionic mantis shrimp robot with an adjustable-mass flexible spine.","authors":"Yidong Xu, Gang Chen, Chenguang Yang, Chuanyu Wu, Huosheng Hu","doi":"10.1088/1748-3190/adf2ea","DOIUrl":"10.1088/1748-3190/adf2ea","url":null,"abstract":"<p><p>To enhance the motion flexibility and environmental adaptability of underwater robots, this study proposes a novel design, Seeker-M, inspired by the locomotion mechanism of the mantis shrimp. The robot imitates the mantis shrimp's multi-pleopod swimming mode and has multi-modal locomotion ability. The robot features a multifunctional flexible spine capable of active bending (maximum angle of 30°) and dynamic center of gravity adjustment (up to 30% of body length). A pitch control system is developed based on this adjustable structure, employing the linear active disturbance rejection control (LADRC) algorithm. Experimental results demonstrate that the LADRC algorithm maintains robust attitude stability under disturbances from pleopod motion, offering an effective approach for underwater attitude control in complex environments.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144692533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research pathways from tensegrity-related biological structures to tensegrity robots: a bibliometric analysis.","authors":"Xiaobo Zhang, Zhongcai Pei, Zhiyong Tang","doi":"10.1088/1748-3190/adedec","DOIUrl":"10.1088/1748-3190/adedec","url":null,"abstract":"<p><p>Tensegrity describes a structural principle featuring a self-stabilizing system that consists of continuous tension elements and discontinuous compression elements. This paper undertakes a comprehensive systematic review of the overall development status and defining characteristics of the tensegrity field, employing bibliometric analysis methods and adopting an evolutionary perspective. Based on data spanning a 35 year period on the tensegrity theme sourced from the Web of Science database, we conducted detailed analyses of annual publication trends, significant authors, research areas, journals and co-occurrence maps of author keywords. These analyses collectively provide a nuanced description of the current state of the tensegrity field, as well as two pivotal sub-fields: biotensegrity and tensegrity robots. Through an analysis of research keywords and a timeline of evolving research hotspots within the tensegrity field, we have discerned a continuous evolution in the primary research focuses; from the initial conceptual application of tensegrity in the biological domain, to the subsequent refinement and development of tensegrity theory, and finally to ongoing advancements in tensegrity robots. From an evolutionary perspective, the dynamic transitions of research hotspots in tensegrity studies reflect both the field's progressive maturation and its expansion into emerging research frontiers. In addition, bioinspiration focuses on abstracting principles from nature to inspire novel solutions in other fields or sub-fields. Tensegrity structures exhibit explanatory compatibility with biological architectures. Based on this, the biotensegrity and tensegrity robots each belong to two bioinspiration pathways within the tensegrity framework. Tensegrity robots have emerged as the most prominent research sub-field within the broader conceptual framework of tensegrity, exhibiting a steadily increasing share of publications in the overall tensegrity literature. However, tensegrity robots still face a series of fundamental challenges, including the complexity of dynamic modeling and control, as well as the dilemma in structural optimization. Addressing these issues will likely depend on (1) improved theoretical models of tensegrity systems, (2) specialized tensegrity models tailored to different bio-inspired prototypes, and (3) novel integrations with various control methodologies. These directions are expected to remain key research focuses in the coming years.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144602320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vortex dynamics in wake-body and wake-fin interactions of tuna-like staggered swimming.","authors":"Zihao Huang, Junshi Wang, Haibo Dong","doi":"10.1088/1748-3190/adebce","DOIUrl":"10.1088/1748-3190/adebce","url":null,"abstract":"<p><p>Fish across many species share similar schooling behavior in which abundance flow interactions occur with hydrodynamic advantages from the vortex flow shed by the conspecifics. This study investigates the mechanisms of schooling interactions in thunniform swimmers, focusing on body effects, using high-fidelity three-dimensional direct numerical simulations of a pair of closely swimming tuna-like models with realistic body morphology and swimming kinematics. An in-house immerse-boundary-method-based incompressible Navier-Stokes flow solver is employed to resolve near-body vortex topology, and the results are analyzed in detail. The interaction mechanism is evaluated by varying the streamwise distance in the stagger formation from 0 to 1 body length (BL) in increments of 0.1 BL, and by introducing tailbeat phase differences at the optimal streamwise spacing, ranging from 0<i>°</i>to 360<i>°</i>in 45<i>°</i>increments. Results identify an optimal streamwise distance of 0.5 BL, where the following fish achieve enhanced forward force production and propulsive efficiency. Notably, the following fish benefits from improved performance across all tailbeat phase differences, as the wake-fin interaction remains robust for its thrust enhancement. Flow analysis reveals that the vortex interception contributes to a 16% thrust improvement on the in-phase follower, while its drag reduction results from a combination of constructive pressure field interactions generating strong anterior suction and wake-body interactions producing forward force on the posterior body. These effects are amplified by tailbeat phase differences, with a 270<i>°</i>phase difference yielding a 19% drag reduction on the following fish and 180<i>°</i>enabling constant drag reduction throughout the motion cycle. This study highlights the enhanced swimming performance of closely paired tuna-like swimmers and identifies interaction mechanisms, offering valuable insights into the hydrodynamics of fish schooling and potential applications in underwater robotics.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioinspired untethered electromagnetic pipe-crawling robot.","authors":"Yan-Ting Lin, Chi-Yi Tsai, Jia-Yang Juang","doi":"10.1088/1748-3190/adedeb","DOIUrl":"10.1088/1748-3190/adedeb","url":null,"abstract":"<p><p>In pipe systems, the emergence of pipe-crawling robots (PCRs) has attracted significant attention for pipe inspection and repair applications. However, conventional PCRs are bulky and heavy, limiting their speed and adaptability, particularly in confined spaces. Additionally, their reliance on tethered power and signal transmission restricts mobility due to the constraints of external cables. To address those challenges, we propose a novel compact, untethered PCR powered by a battery-driven electromagnetic actuator inspired by earthworms. The optimized overlapping design of the magnet and coil enhances driving force, effectively supporting the robot and its onboard battery. We design a control module integrated into a printed circuit board (PCB) to achieve untethered functionality. To further enhance crawling efficiency, we incorporate bioinspired bristles with anisotropic friction at the robot's head and tail to ensure stable anchors during locomotion. Integrating electromagnetic actuator, PCB, and bristles, our bioinspired PCR achieves a lightweight, compact, untethered design capable of fast crawling, even in vertical orientations. Finally, our untethered PCR bears a 12 g onboard battery for both horizontal and vertical crawling, achieving remarkable crawling speeds of 55 BL min<sup>-1</sup>(48.5 mm s<sup>-1</sup>) horizontally and 16.3 BL min<sup>-1</sup>(13 mm s<sup>-1</sup>) vertically.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144602319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct numerical simulations of dragonfly-inspired corrugated tandem airfoils at low Reynolds number.","authors":"Rajosik Adak, Arindam Mandal, Sandeep Saha","doi":"10.1088/1748-3190/adebcf","DOIUrl":"10.1088/1748-3190/adebcf","url":null,"abstract":"<p><p>A corrugated wing is known to significantly enhance aerodynamic efficiency in the low Reynolds number regime. Although the result may be relatable directly to two-winged insects, larger insects flying at similar Reynolds numbers, like dragonflies, have four wings, and the role of the gap between the fore and hind wings in flight has rarely been analyzed. In particular, we perform direct numerical simulations of the flow past a tandem corrugated airfoil configuration at a chord Reynolds number of 10<sup>4</sup>that is of relevance to the micro-unmanned aerial vehicle (MAV) community. We assessed the tandem wing configuration for different horizontal and vertical offsets. In general, the aerodynamic efficiency for tandem configurations is quite high (∼ 10). Furthermore, we find that vertical offsets have a greater impact on aerodynamic forces than horizontal offsets. Positioning the hindwing below the forewing improves aerodynamic efficiency compared to placing the hindwing above because of the generation of a favorable pressure gradient on the forewing. The vortex shedding and correlations evaluate the hindwing/forewing interaction and the fluctuation of the forces. The horizontal offset results demonstrate improved aerodynamic efficiency and reduced flow unsteadiness as the gap between the two wings is minimized, primarily because the interaction between the forewing's wake and the hindwing is suppressed. A study with NACA 0008 is done to corroborate the range of optimal configurations and assess performance benefits of corrugated profile. In addition, the study reveals that the tandem wing configuration maintains efficiency comparable to that of a single wing, allowing us to utilize its advantages for MAV applications.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Hsiang Lai, Sheng-Kai Chang, Kuan-Yu Chen, Yu-Jia Liou, Yu-Cheng Liu
{"title":"Pitch dynamics and aerodynamic interactions in damselfly-Inspired micro air vehicles: the role of the position of the center-of-mass.","authors":"Yu-Hsiang Lai, Sheng-Kai Chang, Kuan-Yu Chen, Yu-Jia Liou, Yu-Cheng Liu","doi":"10.1088/1748-3190/adeb26","DOIUrl":"10.1088/1748-3190/adeb26","url":null,"abstract":"<p><p>This study investigates the influence of center-of-mass (CoM) positioning on the pitch dynamics of damselfly-inspired flapping-wing micro aerial vehicles. We develop a simulation framework that integrates computational fluid dynamics, rigid-body dynamics, and self-propulsion model. Using experimentally measured and fixed wing kinematics, we systematically examine how different CoM positions affect pitch attitude, aerodynamic moments, and flight velocity. The results reveal that variations in CoM position significantly influence body pitch motion, which in turn alters local flow conditions, vortex formation, and moment arm interactions. These changes give rise to a passive pitching mechanism that regulates pitch oscillations and prevents divergence over short timescales. This bounded behavior suggests that insects may achieve transient flight stability through passive aerodynamic-inertial coupling, even in the absence of active control. Additionally, a rearward CoM suppresses downward pitch motion and promotes ascent, while a forward CoM increases forward velocity but limits ascent capability. The findings demonstrate that transient stabilization and flight modulation can be achieved solely through mass distribution, offering a low-complexity design strategy for bio-inspired MAVs.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144555842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}