{"title":"Bio-inspired swarm of underwater robots: a review.","authors":"Qiang Zhao, Tengfei Yang, Guoqiang Tang, Yan Yang, Fangyang Dong, Ziyue Xi, Yongjiu Zou, Minyi Xu, Shuai Li, Chen Wang, Guangming Xie","doi":"10.1088/1748-3190/ade215","DOIUrl":"10.1088/1748-3190/ade215","url":null,"abstract":"<p><p>With the in-depth integration of research across multiple disciplines, such as biomimetics, robotics, and sensing technology, significant advancements have been made in swarm robotics technology, which has been applied in areas including drone swarms, mobile robot swarms, and underwater robot swarms. However, due to the limitations of underwater communication technologies, underwater robot swarms have lagged behind aerial and ground swarms in their development. This paper primarily explores the applications and advancements of swarm intelligence (SI) in multiple underwater robot swarms. Inspired by the behavior of animal swarms, researchers have translated this concept into the design and control strategies of underwater robot swarms. This approach draws on the self-organization, robustness, and adaptability inherent in collective behaviors, significantly enhancing the performance of underwater robot swarms. This paper provides a comprehensive review of the current research status of bio-inspired swarming of multiple underwater robots, including the design and classification of swarm underwater robots, SI algorithms and their applications in multiple underwater robots, and communication mechanisms for underwater robots. Furthermore, this paper highlights critical technical challenges that need to be addressed in research, along with proposed solutions, and discusses the vast application prospects of bio-inspired underwater swarming in military and civilian fields, providing clear directions for future research.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ru-Guo Ji, Yue-Yu Yuan, Xiao-Feng Liu, Xiao-Long Zhang, Feng-Hua Wang, Guo-Ping Cai
{"title":"Experimental and modeling study on pull-off force of fibrillar adhesives.","authors":"Ru-Guo Ji, Yue-Yu Yuan, Xiao-Feng Liu, Xiao-Long Zhang, Feng-Hua Wang, Guo-Ping Cai","doi":"10.1088/1748-3190/ade217","DOIUrl":"10.1088/1748-3190/ade217","url":null,"abstract":"<p><p>In recent years, the use of isotropic bionic fibrillar adhesives (BFA) in space non-cooperative target capture missions has become a research hotspot in the aerospace field. However, accurately evaluating the adhesion performance of these materials remains a critical challenge. To bridge this gap, we experimentally investigate the detachment behavior of two representative BFA types: mushroom-shaped fibrillar adhesives and flat-shaped fibrillar adhesives. The experimental results reveal that the critical detachment force (i.e. pull-off force) is significantly influenced by preload, detachment velocity, and detachment angle. Unlike the monotonic effects observed for preload and velocity, the detachment angle exhibits a non-monotonic relationship with the pull-off force. Specifically, as the detachment angle increases from 0° to 90°, the pull-off force first decreases and then increases. Further experimental validation and numerical simulations indicate that the equivalent bending moment induced by the pull-off force modulates the critical detachment angle-a phenomenon not reported in the existing literature. In addition, the fracture mode transitions from bilateral to unilateral crack propagation as the detachment angle decreases. Simulation results further demonstrate that the detachment angle alters the stress distribution at the adhesive interface, thereby affecting the crack propagation mode. Based on these findings, an approximate pull-off force model for BFA specimens is developed using linear elastic fracture mechanics, which incorporates the effects of preload, detachment velocity, and detachment angle. Following parameter identification, the proposed model accurately predicts the pull-off force for various loading conditions.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bio-inspired robotics in times of ecological crisis: an attempt at self-criticism.","authors":"Maxime Thieffry","doi":"10.1088/1748-3190/ade218","DOIUrl":"10.1088/1748-3190/ade218","url":null,"abstract":"<p><p>This article attempts to show that current trends in bio-inspired robotics research are incompatible with the transformations needed to address the current ecological crisis. A large part of the scientific community takes refuge behind short-term challenges to avoid facing the truth : contrary to some stated ambitions, bio-inspired and soft-robotics research activities are contributing to the overstepping of planetary limits, including the decline of biodiversity and global warming.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aeroacoustics in owl flight: biomechanisms and biomimetics.","authors":"Jiaxin Rong, Hao Liu","doi":"10.1088/1748-3190/ade216","DOIUrl":"10.1088/1748-3190/ade216","url":null,"abstract":"<p><p>Owls have evolved remarkable adaptations for near-silent flight, offering a compelling model for understanding aerodynamic noise reduction. Their morphological specialisations-such as leading-edge serrations, trailing-edge fringes, and velvety wing surfaces-provide crucial insights into bioinspired solutions for various engineering applications. However, the exact aeroacoustic mechanisms underlying these adaptations remain only partially understood. This review provides a comprehensive synthesis of the key biomechanisms associated with silent flight, including both historical perspectives and the latest experimental and computational findings. We also systematically classify and analyse current biomimetic applications in various engineering contexts-including aircraft noise reduction, wind turbine blade optimisation, and other industrial implementations-thereby establishing a clear mechanistic link between fundamental aeroacoustic principles and real-world engineering solutions. Finally, we discuss the key challenges and future directions in owl-inspired aeroacoustics, emphasising the integration of morphological adaptations, wing flexibility, and flight kinematics. By bridging biological insights with engineering innovation, this work underscores the potential of owl-inspired designs to drive the development of quieter, more eco-friendly technologies.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amirhossein Fardi, Hamayun Farooq, Imran Akhtar, Arman Hemmati, Muhammad Saif Ullah Khalid
{"title":"Characterizing the role of hind flippers in hydrodynamics of a harbor seal.","authors":"Amirhossein Fardi, Hamayun Farooq, Imran Akhtar, Arman Hemmati, Muhammad Saif Ullah Khalid","doi":"10.1088/1748-3190/adde07","DOIUrl":"10.1088/1748-3190/adde07","url":null,"abstract":"<p><p>In this paper, we investigate the hydrodynamic characteristics of harbor seal locomotion, focusing on the role of hind flippers in thrust generation and wake dynamics. Through three-dimensional numerical simulations using an immersed boundary method at Reynolds number of 3000, we analyze the impact of varying Strouhal number (St = 0.2-0.35) and propulsive wavelength (λ∗= 1.0-1.2) on swimming performance. Our findings reveal two distinct wake patterns: a single-row structure at lower Strouhal numbers (St⩽0.25) and a double-row configuration at higher St (St⩾0.3). Increasing wavelength generally enhances thrust production by reducing both pressure and friction of drag components. Additionally, we identify critical vortex interactions between the front and hind flippers, with destructive interference occurring at lower St and constructive patterns emerging at higher St. Circulation analysis confirms stronger vortex formation at higher St andλ∗, particularly during the left stroke phase. These results provide novel insights into the hydrodynamic mechanisms underlying seal locomotion and contribute to our understanding of efficient aquatic propulsion systems.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144175897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioinspired drone rotors for reduced aeroacoustic noise and improved efficiency.","authors":"Suryansh Prakhar, Jung-Hee Seo, Rajat Mittal","doi":"10.1088/1748-3190/adde9b","DOIUrl":"10.1088/1748-3190/adde9b","url":null,"abstract":"<p><p>The application of unmanned aerial vehicles (UAVs) is surging across several industries, paralleled by growing demand for these UAVs. However, the noise emitted by UAVs remains a significant impediment to their widespread use even though in areas such as product delivery, they can be more environmentally friendly than traditional delivery methods. Nature has often been a source of inspiration for devices that are efficient and eco-friendly. In the current study, we leverage the previous work by Seo<i>et al</i>(2021<i>Bioinsp. Biomim.</i><b>16</b>046019) on the aeroacoustics of flapping wing flight in mosquitoes and fruit flies to propose and examine a simple strategy for reducing the aeroacoustic noise from drone rotors. In particular, inspired by these insects, we explore how an increase in the planform area of the rotor could be used to reduce the rotation rate and the associated aeroacoustic noise from small-scale rotors. The study employs a sharp-interface immersed boundary solver for the flow simulations and the aeroacoustic sound is predicted by the Ffowcs Williams-Hawkings equation. Simulations indicate that the simple strategy of employing rotors with larger planform areas could lead not just to reduced aeroacoustic noise but improved power economy as well.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144183160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elijah Almanzor, Michael Ishida, Arsen Abdulali, Fumiya Iida
{"title":"Self-organising bio-inspired reflex circuits for robust motor coordination in artificial musculoskeletal systems.","authors":"Elijah Almanzor, Michael Ishida, Arsen Abdulali, Fumiya Iida","doi":"10.1088/1748-3190/adde08","DOIUrl":"10.1088/1748-3190/adde08","url":null,"abstract":"<p><p>Artificial musculoskeletal systems mimic mammalian biomechanics using antagonistic muscles and rigid skeletons. They offer benefits such as adjustable stiffness, back-drivability, and muscle failure tolerance but are difficult to model and control due to redundancies across task, joint, and muscle activation spaces, compounded by complex muscle dynamics and motion-dependent moment arms. Analytical methods require detailed system knowledge and lack scalability, while model-free approaches often rely on manual tuning and rarely exploit motor redundancy. This work introduces a model-free, biologically inspired kinematic controller based on reflex circuits that self-organise via Hebbian learning driven by Spontaneous Motor Activity (SMA). These circuits are then integrated to create a computationally inexpensive task-space controller, requiring minimal training and no analytical modelling. Simulations with six- and twelve-muscle models show that the interaction between reflex circuits, morphology, and gain modulation produces coordinated muscle synergies for human-like target reaching. Unlike previous control methods, it is easily scalable, can automatically handle unknown disturbances, and compensates for inaccessible muscles without re-training or manual intervention while maintaining high control accuracy.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144175839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Shu, Yucong Hua, Weijian Jiao, Jordan R Raney
{"title":"Dynamics and design of passive tails for enhanced stability of motion.","authors":"Hang Shu, Yucong Hua, Weijian Jiao, Jordan R Raney","doi":"10.1088/1748-3190/addc24","DOIUrl":"10.1088/1748-3190/addc24","url":null,"abstract":"<p><p>In this work, we study the nonlinear dynamics of tail motion using numerical simulations and experiments. Our simulations are based on a discrete model comprising rigid cylinders (representing vertebrae) coupled by longitudinal, shear, and bending springs (representing tissues). We consider how various parameter combinations, such as geometric and stiffness gradients in the tail, affect the dynamic response of tails subjected to impulse loading. Using numerical and experimental approaches, we quantify pulse propagation in tails, demonstrating that flexible tails can support a stable wavefront. By incorporating a gradient that gradually decreases the length of each vertebra (geometric gradient) and the stiffness of its connecting tissues (stiffness gradient), we significantly enhance the lateral displacement and velocity of the propagating pulse towards the tip. We show that this effect can be used to improve stability of robotic vehicles subjected to impulses.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Chen, Qiao Hu, Shijie Li, Hao Zhang, Liangjie Sun, Hongbo Wei, Tianlong Wang
{"title":"Underwater bionic undulating fins incorporating thickness effects: hydrodynamic performance and optimal thickness variation rate analysis.","authors":"Long Chen, Qiao Hu, Shijie Li, Hao Zhang, Liangjie Sun, Hongbo Wei, Tianlong Wang","doi":"10.1088/1748-3190/add3e4","DOIUrl":"10.1088/1748-3190/add3e4","url":null,"abstract":"<p><p>In response to the urgent issues faced by current bionic undulating fin robot propulsion mechanisms, such as low working efficiency, insufficient swimming speed, ignoring thickness parameters, and the need for further improvement in biomimetic degree, this article extends the theory of surface elements to tetrahedral elements using d'Alembert's principle, making it better suited for the research of undulating fins with thickness. By employing computational fluid dynamics simulations and comparative studies, the article examines the influence of motion parameters on the hydrodynamic performance of undulating fins that have thickness. The results are more valuable for engineering applications. Further research on the dimensional parameters of undulating fins is carried out, proposing that the design of undulating fins should theoretically follow the priority order of 'width first, then length, and finally thickness'. Based on this, a bionic fin with variable thickness is designed, and the optimal range of comprehensive hydrodynamic performance for the variable thickness fin is obtained.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144034211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Encoding flexible gait strategies in stick insects through data-driven inverse reinforcement learning.","authors":"Yuchen Wang, Mitsuhiro Hayashibe, Dai Owaki","doi":"10.1088/1748-3190/addc26","DOIUrl":"10.1088/1748-3190/addc26","url":null,"abstract":"<p><p>Stick insects exhibit remarkable adaptive walking capabilities across diverse environments; however, the mechanisms underlying their gait transitions remain poorly understood. Although reinforcement learning (RL) has been employed to generate insect-like gaits, the design of an appropriate reward function presents a challenge due to the probabilistic and continuous nature of gait transitions. This study utilized maximum entropy inverse RL to infer the reward function that governs stick insect gait selection, incorporating walking dynamic parameters-namely, velocity, direction, and acceleration-alongside antenna joint movements as state variables. By analyzing the inferred reward structures, we clarified the underlying principles that drive gait transitions and emphasized the role of sensory feedback in gait modulation. The efficacy of the inferred policies was validated through an assessment of their ability to reproduce expert trajectories, demonstrating that stick insect gaits can be learned from observable states during locomotion. Furthermore, interspecies variations and noncanonical gait patterns were examined, providing insights into the flexibility and adaptability of insect locomotion. This data-driven approach offers a biologically interpretable framework for gait modeling and contributes to bioinspired robotic design by facilitating adaptive control strategies for hexapod robots.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}