三维波纹表面水动力和声学性能的多目标优化。

IF 3 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Zixiao Wei, Zilan Zhang, Dahyun Daniel Lim, Justin Rey, Matthew Jones, Grace X Gu
{"title":"三维波纹表面水动力和声学性能的多目标优化。","authors":"Zixiao Wei, Zilan Zhang, Dahyun Daniel Lim, Justin Rey, Matthew Jones, Grace X Gu","doi":"10.1088/1748-3190/ae0227","DOIUrl":null,"url":null,"abstract":"<p><p>Riblets inspired by the dermal denticles of shark skin are widely recognized for their drag-reducing performance. Although previous research has predominantly focused on two-dimensional riblet geometries, three-dimensional (3D) topographies remain underexplored due to the complex architecture of denticle-inspired surfaces. Natural riblet arrays, comprising thousands of interconnected dermal denticles, pose challenges in terms of parameterization, simulation, and fabrication. This work addresses these challenges by introducing a 3D, riblet-reinforced surface topography design that reduces drag, suppresses flow-induced noise, and simplifies both parameterization and prototyping, ultimately providing a scalable solution for towed array sonar applications. Leveraging Bayesian optimization, our computational fluid dynamics (CFD) results reveal that the optimal design decreases the overall sound pressure level by 6.87 dB and reduces drag by 0.34%, effectively balancing noise mitigation with hydrodynamic performance. The design that achieves the greatest noise reduction lowers flow noise by 8.81 dB, albeit with a slight increase in drag. The most effective design for drag reduction yields a 5.18% decrease, accompanied by significant noise suppression across key frequency bands. Flow field analysis demonstrates that our design alters the near-wall vorticity dynamics by promoting the formation of vortex rings that detach from the surface, thereby reducing turbulent energy transfer and limiting sound pressure fluctuations relative to a smooth surface design. To this end, the combination of CFD simulations and Bayesian optimization offers an efficient pathway to refine riblets-reinforced surface topographies, paving the way for advanced bioinspired designs that improve acoustic performance and efficiency in underwater applications.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of three-dimensional riblet surfaces for hydrodynamic and acoustic performance.\",\"authors\":\"Zixiao Wei, Zilan Zhang, Dahyun Daniel Lim, Justin Rey, Matthew Jones, Grace X Gu\",\"doi\":\"10.1088/1748-3190/ae0227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Riblets inspired by the dermal denticles of shark skin are widely recognized for their drag-reducing performance. Although previous research has predominantly focused on two-dimensional riblet geometries, three-dimensional (3D) topographies remain underexplored due to the complex architecture of denticle-inspired surfaces. Natural riblet arrays, comprising thousands of interconnected dermal denticles, pose challenges in terms of parameterization, simulation, and fabrication. This work addresses these challenges by introducing a 3D, riblet-reinforced surface topography design that reduces drag, suppresses flow-induced noise, and simplifies both parameterization and prototyping, ultimately providing a scalable solution for towed array sonar applications. Leveraging Bayesian optimization, our computational fluid dynamics (CFD) results reveal that the optimal design decreases the overall sound pressure level by 6.87 dB and reduces drag by 0.34%, effectively balancing noise mitigation with hydrodynamic performance. The design that achieves the greatest noise reduction lowers flow noise by 8.81 dB, albeit with a slight increase in drag. The most effective design for drag reduction yields a 5.18% decrease, accompanied by significant noise suppression across key frequency bands. Flow field analysis demonstrates that our design alters the near-wall vorticity dynamics by promoting the formation of vortex rings that detach from the surface, thereby reducing turbulent energy transfer and limiting sound pressure fluctuations relative to a smooth surface design. To this end, the combination of CFD simulations and Bayesian optimization offers an efficient pathway to refine riblets-reinforced surface topographies, paving the way for advanced bioinspired designs that improve acoustic performance and efficiency in underwater applications.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ae0227\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ae0227","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以天然鲨鱼皮肤小齿为灵感的条纹因其减少阻力的性能而得到广泛认可。尽管先前的研究主要集中在二维条纹几何上,但由于齿状突启发表面的复杂结构,三维地形仍然未被充分探索。由数千个相互连接的小齿组成的天然条纹阵列在参数化、仿真和制造方面提出了挑战。这项工作通过引入三维、膛线增强的表面形貌设计来解决这些挑战,该设计减少了阻力,抑制了流动引起的噪音,简化了参数化和原型设计,最终为拖曳阵列声纳应用提供了可扩展的解决方案。利用贝叶斯优化,我们的计算流体力学结果表明,优化设计使整体声压级降低了6.87 dB,阻力降低了0.34%,有效地平衡了噪声缓解和流体力学性能。该设计实现了最大的降噪效果,尽管阻力略有增加,但流动噪声降低了8.81 dB。最有效的减阻设计可降低5.18%的阻力,同时在关键频段具有显著的噪声抑制作用。流场分析表明,波纹通过促进与表面分离的涡环的形成,从而改变了近壁涡度动力学,从而减少了湍流能量传递,限制了相对于光滑表面设计的压力波动。为此,计算流体动力学模拟和贝叶斯优化相结合为改进波纹增强表面形貌提供了有效途径,为先进的生物设计铺平了道路,从而提高了水下应用的声学隐身性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective optimization of three-dimensional riblet surfaces for hydrodynamic and acoustic performance.

Riblets inspired by the dermal denticles of shark skin are widely recognized for their drag-reducing performance. Although previous research has predominantly focused on two-dimensional riblet geometries, three-dimensional (3D) topographies remain underexplored due to the complex architecture of denticle-inspired surfaces. Natural riblet arrays, comprising thousands of interconnected dermal denticles, pose challenges in terms of parameterization, simulation, and fabrication. This work addresses these challenges by introducing a 3D, riblet-reinforced surface topography design that reduces drag, suppresses flow-induced noise, and simplifies both parameterization and prototyping, ultimately providing a scalable solution for towed array sonar applications. Leveraging Bayesian optimization, our computational fluid dynamics (CFD) results reveal that the optimal design decreases the overall sound pressure level by 6.87 dB and reduces drag by 0.34%, effectively balancing noise mitigation with hydrodynamic performance. The design that achieves the greatest noise reduction lowers flow noise by 8.81 dB, albeit with a slight increase in drag. The most effective design for drag reduction yields a 5.18% decrease, accompanied by significant noise suppression across key frequency bands. Flow field analysis demonstrates that our design alters the near-wall vorticity dynamics by promoting the formation of vortex rings that detach from the surface, thereby reducing turbulent energy transfer and limiting sound pressure fluctuations relative to a smooth surface design. To this end, the combination of CFD simulations and Bayesian optimization offers an efficient pathway to refine riblets-reinforced surface topographies, paving the way for advanced bioinspired designs that improve acoustic performance and efficiency in underwater applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信