Bioinspiration & Biomimetics最新文献

筛选
英文 中文
Plant-inspired decentralized controller for robust orientation control of soft robotic manipulators.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-20 DOI: 10.1088/1748-3190/adb116
Guanran Pei, Josie Hughes
{"title":"Plant-inspired decentralized controller for robust orientation control of soft robotic manipulators.","authors":"Guanran Pei, Josie Hughes","doi":"10.1088/1748-3190/adb116","DOIUrl":"10.1088/1748-3190/adb116","url":null,"abstract":"<p><p>Due to the complexity of deformations in soft manipulators, achieving precise control of their orientation is particularly challenging, especially in the presence of external disturbances and human interactions. Inspired by the decentralized growth mechanism of plant gravitropism, which enables plants' roots and stems to grow in the direction of gravity despite complex environmental interactions, this study proposes a decentralized control strategy for robust orientation control of multi-segment soft manipulators. This gravitropism-inspired decentralized controller was validated through simulations for convergence and robustness, and benchmarked against the traditional inverse Jacobian-based controller on a large-scale multi-segment soft manipulator. Experimental results demonstrate that the decentralized controller achieves comparable convergence and better control precision to the inverse Jacobian-based controller, while significantly outperforming it in disturbance rejection. Even in the presence of partial damage and human interaction, the decentralized controller provides robust control. This study provides a robust new approach for managing disturbances in complex environments, laying the foundation for further exploration of decentralized control strategies in soft robotics.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flapping dynamics and wing flexibility enhance odor detection in blue bottle flies.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-19 DOI: 10.1088/1748-3190/adb822
Naeem Haider, Zhipeng Lou, Shih-Jung Hsu, Bo Cheng, Chengyu Li
{"title":"Flapping dynamics and wing flexibility enhance odor detection in blue bottle flies.","authors":"Naeem Haider, Zhipeng Lou, Shih-Jung Hsu, Bo Cheng, Chengyu Li","doi":"10.1088/1748-3190/adb822","DOIUrl":"https://doi.org/10.1088/1748-3190/adb822","url":null,"abstract":"<p><p>One of the most ancient and evolutionarily conserved behaviors in the animal kingdom involves utilizing wind-borne odor plumes to track essential elements such as food, mates, and predators. Insects, particularly flies, demonstrate a remarkable proficiency in this behavior, efficiently processing complex odor information encompassing concentrations, direction, and speed through their olfactory system, thereby facilitating effective odor-guided navigation. Recent years have witnessed substantial research explaining the impact of wing flexibility and kinematics on the aerodynamics and flow field physics governing the flight of insects. However, the relationship between the flow field and olfactory functions remains largely unexplored, presenting an attractive frontier with numerous intriguing questions. One such question pertains to whether flies intentionally manipulate the flow field around their antennae using their wing structure and kinematics to augment their olfactory capabilities. To address this question, we first reconstructed the wing kinematics based on high-speed video recordings of wing surface deformation. Subsequently, we simulated the unsteady flow field and odorant transport during the forward flight of blue bottle flies (Calliphora vomitoria) by solving the Navier-Stokes equations and odorant advection-diffusion equations using an in-house computational fluid dynamics (CFD) solver. Our simulation results demonstrated that flexible wings generated greater cycle-averaged aerodynamic forces compared to purely rigid flapping wings, underscoring the aerodynamic advantages of wing flexibility. Additionally, flexible wings produced 25% greater odor intensity, enhancing the insect's ability to detect and interpret olfactory cues. This study not only advances our understanding of the intricate interplay between wing motion, aerodynamics, and olfactory capabilities in flying insects but also raises intriguing questions about the intentional modulation of flow fields for sensory purposes in other behaviors.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A guide to eusocial insect faulted agent resilience and its engineering applications. 昆虫过错代理复原力及其工程应用指南。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-18 DOI: 10.1088/1748-3190/adb22b
James Hand, Bryan Watson
{"title":"A guide to eusocial insect faulted agent resilience and its engineering applications.","authors":"James Hand, Bryan Watson","doi":"10.1088/1748-3190/adb22b","DOIUrl":"10.1088/1748-3190/adb22b","url":null,"abstract":"<p><p>Resilience is a vital aspect of modern systems, especially in multi-agent systems, where faulted agents (agents who do not behave properly) can compromise system performance. In response to this need for resilience, we turn to biological inspiration. Eusocial insects are a subset of insects that have caste-based labor distribution and cooperative brood care. These insects face analogous challenges in maintaining and improving resilience to external threats, making them prime examples to find unique biological solutions to resilience problems. Thus, the central question of this work is:<i>How can eusocial insect behavior be used to inspire new approaches to prevent or limit faulted agents from impacting the performance of multi-agent systems</i>? Engineers, however, do not always have the necessary biological expertise to identify behaviors to mimic. This article seeks to fill the following identified gap in current research and resources:<i>There is need to study the impact of biologically inspired behaviors on faulted agent resilience, but engineers may struggle to identify sources in the biological literature to translate into engineering applications.</i>To address this question and the identified gap, we provide a guide identifying a large range of insect resilience behaviors and examples of possible implementation of these behaviors. This guide is a functional decomposition examining how eusocial insects prevent disease propagation that engineers can transfer to their systems when seeking to mitigate faulted agents. The presented functional decomposition is made of 148 identified functions across 7 levels, organized into 5 primary categories. This provides a guide for engineers to use when looking for sources of inspiration to improve system resilience. Additional discussion is also provided to offer potential implementations of these 148 functions, so as to encourage further work and usage of this work.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Locomotion design of transverse ledge brachiation robot with active wrist joint for lateral posture compensation.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-14 DOI: 10.1088/1748-3190/adb117
Reno Pangestu, Shu-Ting Yeh, Chi-Ying Lin
{"title":"Locomotion design of transverse ledge brachiation robot with active wrist joint for lateral posture compensation.","authors":"Reno Pangestu, Shu-Ting Yeh, Chi-Ying Lin","doi":"10.1088/1748-3190/adb117","DOIUrl":"10.1088/1748-3190/adb117","url":null,"abstract":"<p><p>A transverse ledge brachiation robot is designed to move transversely along a ledge on a vertical wall by generating energy from the swinging motion of its lower limbs. This method reduces the force required by the upper limbs to propel the robot forward. However, previously developed robots often encounter a common issue: lateral posture deviation, which is typically caused by slippage when the grippers grasp the ledge. Without compensation, this deviation can increase the risk of falling during continuous brachiation cycles. To address this problem, we propose an active wrist joint mechanism utilizing a feedback control approach as the compensator to effectively correct gripper position deviations. In our robot design, we develop a motion control strategy that coordinates the upper and lower limbs in order to maintain the swing energy that can be transferred to the subsequent cycles. Then we propose a potential energy-based phase switching condition in the motion control strategy in order to simplify the computation process. Simulation results demonstrate that the optimized parameter for compensation effectively maintains the gripper's position relative to the ledge throughout 55 brachiation cycles. Furthermore, experiment validation shows that this posture compensation reduces deviation by one-third compared to results without compensation. This study has demonstrated a 68% improvement in energy consumption efficiency for continuous transverse brachiation compared to the previous generation, as well as a 37% improvement over transverse ricochetal brachiation locomotion.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A wing-flapping robot with a bio-inspired folding mechanism derived from the beetle's hind wing.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-14 DOI: 10.1088/1748-3190/adb2cb
Xin Li, Yu Zheng, Huan Shen
{"title":"A wing-flapping robot with a bio-inspired folding mechanism derived from the beetle's hind wing.","authors":"Xin Li, Yu Zheng, Huan Shen","doi":"10.1088/1748-3190/adb2cb","DOIUrl":"10.1088/1748-3190/adb2cb","url":null,"abstract":"<p><p>When the beetle lands on the target, the hind wings fold regularly to form smaller wing packages and are hidden on the ventral side of the elytra due to the interaction between the elytra and abdomen. Its complex folding pattern is attributed to the flexibility of the hind wings, the super-elasticity of the folding joints, and the special geometric morphology of the veins. The corrugation and folding pattern of the hind wings can provide new insights for the design of folding anti-collision mechanisms and the improvement of aerodynamic performance of ornithopter. This paper first proposes a beetle-type ornithopter with foldable wings based on the folding mechanism and kinematic characteristics of the beetle's hind wings. Subsequently, a series of numerical simulations were conducted on flapping wing robot to explore its flapping kinematics, folding stability, structural stiffness. Finally, the force generation of flapping wings was tested on the fabricated prototype.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic tools: insights and implications of a comprehensive analysis and classification.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-12 DOI: 10.1088/1748-3190/adaff6
Jindong Zhang, Laila Kestem, Kirsten Wommer, Kristina Wanieck
{"title":"Biomimetic tools: insights and implications of a comprehensive analysis and classification.","authors":"Jindong Zhang, Laila Kestem, Kirsten Wommer, Kristina Wanieck","doi":"10.1088/1748-3190/adaff6","DOIUrl":"10.1088/1748-3190/adaff6","url":null,"abstract":"<p><p>Biomimetics as the transdisciplinary field leveraging biologically inspired solutions for technical and practical challenges has gained traction in recent decades. Despite its potential for innovation, the complexity of its process requires a deeper understanding of underlying tasks, leading to the development of various tools to aid this process. This study identified an inventory of 104 tools used in biomimetics, of which 24 have been classified as fully accessible, functional, and ready-to-use biomimetic tools. Additionally, it provides definitions and evaluation criteria for biomimetic tools, offering a structured approach to tool assessment. The 24 tools have been assessed based on ten criteria in a qualitative and quantitative analysis yielding an overview of their typology, accessibility, stage of development, and other key characteristics. Patterns of the typology development of tools over time revealed a trend towards integrating computational methods and artificial intelligence, thereby enhancing the tool's functionality and user engagement. However, gaps in tool functionality and maturity, such as the lack of tools designed to support technical processes, the absence of tools tailored for solution-based approaches, and insufficient evidence of successful tool application, highlight areas for future research. The study results underscore the need for empirical validation of tools, and research into the effectiveness of holistic tools covering multiple stages of the biomimetic process. By addressing these gaps and leveraging existing strengths, the field of biomimetics can continue to advance, providing innovative solutions inspired by biological models.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilience of hierarchical actuators highlighted by a myosin-to-muscle mock-up.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-10 DOI: 10.1088/1748-3190/adadd5
Raphaël Perrier, Jean-Marc Linares, Loïc Tadrist
{"title":"Resilience of hierarchical actuators highlighted by a myosin-to-muscle mock-up.","authors":"Raphaël Perrier, Jean-Marc Linares, Loïc Tadrist","doi":"10.1088/1748-3190/adadd5","DOIUrl":"10.1088/1748-3190/adadd5","url":null,"abstract":"<p><p>Skeletal muscle is the main actuator of various families of vertebrates (mammals, fish, reptiles). It displays remarkable robustness to micro-damage, that supposedly originates both from its redundant hierarchical structure and its nervous command. A bioinspired mock-up was designed and manufactured mimicking sarcomeres (micro-scale) and its series and parallel structure from fibre to muscle. First, the mechanical performances namely the force-velocity curve of the intact muscle mock-up were measured and modelled. Then, mimicking micro-damage by making some myosin heads inoperative, the mechanical performances were again measured to determine the resilience of the actuator. The mock-up is shown to be resilient: in the event of 10% damage of the mock-up, the mechanical performance of the mock-up was around 80% of the intact one. In this multi degrees of freedom actuator with hierarchical structure, the resilience is shown to be almost linear with the damage level for uniformly distributed damage (both maximal force and velocity decrease). Differently when micro-damage are clustered on a fibre, this decreases the maximal force with little effect on velocity.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and experiments of a humanoid torso based on biological features.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-07 DOI: 10.1088/1748-3190/adadba
Wenshuo Gao, Zhiwei Tian
{"title":"Design and experiments of a humanoid torso based on biological features.","authors":"Wenshuo Gao, Zhiwei Tian","doi":"10.1088/1748-3190/adadba","DOIUrl":"10.1088/1748-3190/adadba","url":null,"abstract":"<p><p>Among the components of a humanoid robot, a humanoid torso plays a vital role in supporting a humanoid robot to complete the desired motions. In this paper, a new LARMbot torso is developed to obtain better working performance based on biological features. By analyzing the anatomy of a human torso and spine, a parallel cable-driven mechanism is proposed to actuate the whole structure using two servo motors and two pulleys. Analysis is conducted to evaluate the properties of the proposed parallel cable-driven mechanism. A closed-loop control system is applied to control the whole LARMbot torso. Experiments are performed using the manufactured prototype in three modes to evaluate the characterizations of the proposed design. Results show that the proposed LARMbot can complete the desired motions properly, including two general human-like motions and a full rotation motion. When completing two general human-like motions, the maximum bending angle is 40 degrees. The maximum cable tension is 0.68 N, and the maximum required power is 18.3 W. In full rotation motion, the maximum bending angle is 30 degrees. The maximum cable tension is 0.75 N, and the maximum power required is 20.5 W. The proposed design is simplified and lightweight, with low energy consumption and flexible spatial motion performance that can meet the requirements of the humanoid robot torso's application in complex scenarios and commercial requirements.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the swimming performance and the physical mechanisms ofTomopterislocomotion.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-07 DOI: 10.1088/1748-3190/adad26
Nicholas A Battista
{"title":"Exploring the swimming performance and the physical mechanisms of<i>Tomopteris</i>locomotion.","authors":"Nicholas A Battista","doi":"10.1088/1748-3190/adad26","DOIUrl":"10.1088/1748-3190/adad26","url":null,"abstract":"<p><p>Tomopterids are mesmerizing holopelagic swimmers. They use two modes of locomotion simultaneously: drag-based metachronal paddling and bodily undulation.<i>Tomopteris</i>has two rows of flexible, leg-like parapodia positioned on opposite sides of its body. Each row metachronally paddles out of phase to the other. Both paddling behaviors occur in concert with a lateral bodily undulation. However, when looked at independently, each mode appears in tension with the other. The direction of the undulatory wave is opposite of what one may expect for forward (FWD) swimming and appears to actively work act against the direction of swimming initiated by metachronal paddling. To investigate how these two modes of locomotion synergize to generate effective swimming, we created a self-propelled, fluid-structure interaction model of an idealized<i>Tomopteris</i>. We holistically explored swimming performance over a 3D mechanospace comprising parapodia length, paddling amplitude, and undulatory amplitude using a machine learning framework based on polynomial chaos expansions. Although undulatory amplitude minimally affected FWD swimming speeds, it helped mitigate the larger costs of transport that arise from either using more mechanically expensive (larger) paddling amplitudes and/or having longer parapodia.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric description of a gliding grey-headed albatross (Thalassarche chrysostoma) for computer-aided design.
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2025-02-07 DOI: 10.1088/1748-3190/adad25
J Schoombie, K J Craig, L Smith
{"title":"Geometric description of a gliding grey-headed albatross (<i>Thalassarche chrysostoma</i>) for computer-aided design.","authors":"J Schoombie, K J Craig, L Smith","doi":"10.1088/1748-3190/adad25","DOIUrl":"10.1088/1748-3190/adad25","url":null,"abstract":"<p><p>Albatrosses are increasingly drawing attention from the scientific community due to their remarkable flight capabilities. Recent studies suggest that grey-headed albatrosses (GHA) may be the fastest and most energy-efficient of the albatross species, yet no attempts have been made to replicate their wing design. A key factor in aircraft design is the airfoil, which remains uncharacterized for the GHA. Other critical aspects, such as wing twist and dihedral/anhedral, also remain unquantified for any albatross species. This study aimed to fill this gap in the current knowledge by extracting detailed morphological data from a GHA wing to recreate digitally. A well-preserved dried GHA wing was scanned in the presence of airflow in a wind tunnel, at conditions that represent a GHA in gliding flight. Wing cross-sections were extracted and smoothed to produce a series of airfoils along the wing span. The 3D properties such as wing dihedral/anhedral, sweep and twist were also extracted and used to build a CAD model of the wing. Variations in airfoil shape were observed along the wing span, with thicker, more cambered airfoils near the wing base. The model wing's camber was slightly higher, particularly in the arm section, but overall matched flight photographs. The body, tail, and bill were modelled based on available photographs and known dimensions from literature and merged with the wing to form the final bill-body-wing-tail model. This model is based on real GHA morphology under aerodynamic pressure, in gliding flight. Although geometric changes due to scanner interference remain a limitation of this method, the extracted geometric data still provide valuable insights into wing performance under varying conditions. The geometry can also be fully parameterized for complex simulations, aiding studies of GHA aerodynamics and engineering design, such as in aircraft or wind turbines at similar Reynolds numbers.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信