Samane Amini, Iman Kardan, Ajay Seth, Alireza Akbarzadeh
{"title":"Empowering human-like walking with a bio-inspired gait controller for an under-actuated torque-driven human model.","authors":"Samane Amini, Iman Kardan, Ajay Seth, Alireza Akbarzadeh","doi":"10.1088/1748-3190/adb2ca","DOIUrl":"10.1088/1748-3190/adb2ca","url":null,"abstract":"<p><p>Human gait simulation plays a crucial role in providing insights into various aspects of locomotion, such as diagnosing injuries and impairments, assessing abnormal gait patterns, and developing assistive and rehabilitation technologies. To achieve more realistic gait simulation results, it is essential to use a comprehensive model that accurately replicates the kinematics and kinetics of human movement. Human skeletal models in OpenSim software provide anatomically accurate and anthropomorphic structures, enabling users to create personalized models that accurately replicate individual human behavior. However, these torque-driven models encounter challenges in stabilizing unactuated degree of freedom of pelvis tilt in forward dynamic simulations Adopting a bio-inspired strategy that ensures human balance with a minimized energy expenditure during walking, this paper addresses a gait controller for a torque-driven human skeletal model to achieve stable walking. The proposed controller employs a nonlinear model-based approach to calculate a balance-equivalent control torque and utilizes the hip-ankle strategy to distribute this torque across the lower-limb joints during the stance phase. To optimize the parameters of the trajectory tracking controller and the balance distribution coefficients, we developed a forward dynamic simulation interface established between MATLAB and OpenSim. The simulation results indicated that the torque-driven model achieves a natural gait, with joint torques closely aligning with the experimental data. The robustness of the bio-inspired gait controller was further evaluated by applying a range of external forces on the skeletal model. The robustness analysis demonstrated efficient balance recovery mechanism of the proposed bio-inspired gait controller in response to external disturbances.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naeem Haider, Zhipeng Lou, Shih-Jung Hsu, Bo Cheng, Chengyu Li
{"title":"Flapping dynamics and wing flexibility enhance odor detection in blue bottle flies.","authors":"Naeem Haider, Zhipeng Lou, Shih-Jung Hsu, Bo Cheng, Chengyu Li","doi":"10.1088/1748-3190/adb822","DOIUrl":"10.1088/1748-3190/adb822","url":null,"abstract":"<p><p>One of the most ancient and evolutionarily conserved behaviors in the animal kingdom involves utilizing wind-borne odor plumes to track essential elements such as food, mates, and predators. Insects, particularly flies, demonstrate a remarkable proficiency in this behavior, efficiently processing complex odor information encompassing concentrations, direction, and speed through their olfactory system, thereby facilitating effective odor-guided navigation. Recent years have witnessed substantial research explaining the impact of wing flexibility and kinematics on the aerodynamics and flow field physics governing the flight of insects. However, the relationship between the flow field and olfactory functions remains largely unexplored, presenting an attractive frontier with numerous intriguing questions. One such question pertains to whether flies intentionally manipulate the flow field around their antennae using their wing structure and kinematics to augment their olfactory capabilities. To address this question, we first reconstructed the wing kinematics based on high-speed video recordings of wing surface deformation. Subsequently, we simulated the unsteady flow field and odorant transport during the forward flight of blue bottle flies (<i>Calliphora vomitoria</i>) by solving the Navier-Stokes equations and odorant advection-diffusion equations using an in-house computational fluid dynamics solver. Our simulation results demonstrated that flexible wings generated greater cycle-averaged aerodynamic forces compared to purely rigid flapping wings, underscoring the aerodynamic advantages of wing flexibility. Additionally, flexible wings produced 25% greater odor intensity, enhancing the insect's ability to detect and interpret olfactory cues. This study not only advances our understanding of the intricate interplay between wing motion, aerodynamics, and olfactory capabilities in flying insects but also raises intriguing questions about the intentional modulation of flow fields for sensory purposes in other behaviors.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luo Yu, Jinjiang Lai, Jun Huang, Hongying Liu, Xitian Pi
{"title":"Wireless motion control of a swimming eel-machine hybrid robot.","authors":"Luo Yu, Jinjiang Lai, Jun Huang, Hongying Liu, Xitian Pi","doi":"10.1088/1748-3190/adbeac","DOIUrl":"https://doi.org/10.1088/1748-3190/adbeac","url":null,"abstract":"<p><p>This study presents a flexible aquatic swimming robot, which is a promising candidate for underwater search and detection missions. The robot is a living eel fitted with a wireless electronic backpack stimulator attached to its dorsal region. Leveraging the eel's inherent self-balancing and self-adaptation abilities, the robot can adapt seamlessly to complex underwater environments without the need for sophisticated controllers. Lateral line stimulation allows the robot to execute forward and backward swimming, as well as left and right curls. We graded the forward and backward swimming speed by varying the stimulus frequency and pulse width. The optimal stimulus parameters are as follows: amplitude 3.0-4.5 V, frequency 5-20 Hz, and pulse width 40-60 ms. The maximum success rates for forward and backward swimming responses to stimuli were approximately 96% and 77%, respectively. Utilizing lower pulse frequencies (5-20 Hz) and wider pulse widths (40-60 ms) facilitated sustained and efficient activation of the lateral line neural system. Electrical stimulation of the lateral line increases the eel's forward swimming speed by approximately 70%, while the electronic backpack draws only 48.1 mW of external power. Compared to bio-inspired robots, the eel-machine hybrid robot consumes 1.5 to 1100 times less external power per unit mass. The remarkable efficiency of this bio-robot enhances its performance in tasks such as underwater cave exploration.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143598600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Simovic Pavlovic, Dusan Grujic, Maja Pagnacco, Bojana Bokic, Darko Vasiljevic, Thierry Verbiest, Branko Kolaric
{"title":"Thermophoretic effect in natural photonics: holographic study.","authors":"Marina Simovic Pavlovic, Dusan Grujic, Maja Pagnacco, Bojana Bokic, Darko Vasiljevic, Thierry Verbiest, Branko Kolaric","doi":"10.1088/1748-3190/adb6e8","DOIUrl":"10.1088/1748-3190/adb6e8","url":null,"abstract":"<p><p>Natural photonic structures allow us to reveal and mold the thermophoretic effect at the nanoscale within condensed matter systems. In this paper, for the first time, holography has been exploited to disclose conditions that determine the strength and dynamics of the thermophoretic effect. We experimentally revealed the link between geometry and nano-corrugation of biological structures that shapes the power of thermophoresis. The presented study opens enormous possibilities for harnessing the thermophoretic effect in various bioinspired sensing applications, uniquely merging the fields of photonics and mechanics.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oliver Hausdörfer, Astha Gupta, Auke J Ijspeert, Daniel Renjewski
{"title":"Using deep reinforcement learning to investigate stretch feedback during swimming of the lamprey.","authors":"Oliver Hausdörfer, Astha Gupta, Auke J Ijspeert, Daniel Renjewski","doi":"10.1088/1748-3190/adb8b1","DOIUrl":"10.1088/1748-3190/adb8b1","url":null,"abstract":"<p><p>Animals have to navigate complex environments and perform intricate swimming maneuvers in the real world. To conquer these challenges, animals evolved a variety of motion control strategies. While it is known that many factors contribute to motion control, we specifically focus on the role of stretch sensory feedback. We investigate how stretch feedback potentially serves as a way to coordinate locomotion, and how different stretch feedback topologies, such as networks spanning varying ranges along the spinal cord, impact the locomotion. We conduct our studies on a simulated robot model of the lamprey consisting of an articulated spine with eleven segments connected by actuated joints. The stretch feedback is modeled with neural networks trained with deep reinforcement learning. We find that the topology of the feedback influences the energy efficiency and smoothness of the swimming, along with various other metrics characterizing the locomotion, such as frequency, amplitude and stride length. By analyzing the learned feedback networks, we highlight the importances of very local, caudally-directed, as well as stretch derivative information. Our results deliver valuable insights into the potential mechanisms and benefits of stretch feedback control and inspire novel decentralized control strategies for complex robots.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Animal-robot interaction induces local enhancement in the Mediterranean fruit fly<i>Ceratitis capitata</i>Wiedemann.","authors":"Donato Romano, Cesare Stefanini","doi":"10.1088/1748-3190/adbb42","DOIUrl":"https://doi.org/10.1088/1748-3190/adbb42","url":null,"abstract":"<p><p>Animal-robot interaction (ARI) is an emerging field that uses biomimetic robots to replicate biological cues, enabling controlled studies of animal behavior. This study investigates the potential for ARI systems to induce local enhancement (e.g., where animals are attracted to areas based on the presence or actions of conspecifics) in the Mediterranean fruit fly, Ceratitis capitata, a major agricultural pest. We developed biomimetic agents that mimic C. capitata in morphology and color, to explore their ability to trigger local enhancement. The study employed three categories of artificial agents: Full Biomimetic Agent (FBA), Partial Biomimetic Agent (PBA), and Non-Biomimetic Agent (NBA), in both motionless and moving states. Flies exposed to motionless FBAs showed a significant preference for areas containing these agents compared to areas with no agents. Similarly, moving FBAs also attracted more flies than stationary agents. Time spent in the release section before making a choice and the overall experiment duration were significantly shorter when conspecifics or moving FBAs were present, indicating that C. capitata is highly responsive to biomimetic cues, particularly motion. These results suggest that ARI systems can be effective tools for understanding and manipulating local enhancement in C. capitata, offering new opportunities for sustainable pest control in agricultural contexts. Overall, this research demonstrates the potential of ARI as an innovative, sustainable approach to insect population control, with broad applications in both fundamental behavioral research and integrated pest management.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143525390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and implementation of an independent-drive bionic dragonfly robot.","authors":"Danguo Cheng, Zhong Yang, Guojun Chen, Hongyu Xu, Luwei Liao, Wei Chen","doi":"10.1088/1748-3190/adb5e4","DOIUrl":"10.1088/1748-3190/adb5e4","url":null,"abstract":"<p><p>Bionic flapping wing robots achieve flight by imitating animal flapping wings, which are safe, flexible, and efficient. Their practicality and human-machine symbiosis in narrow and complex environments are better than traditional fixed-wing or multirotor drones, indicating broader application potential. By systematic and biomimetic methods, a bionic dragonfly robot with four independent drive flapping wings, called DFly-I, was designed. Firstly, the mechanical structure of the robot was introduced, especially the fluttering structure and the wing structure. Then, a novel motion controller utilizing multi-channel field-oriented control (FOC) is proposed for its motion mechanism, which relies on four sets of brushless DC motors based on FOC control and four sets of servos to achieve independent control of the flapping speed, rhythm, and angle of the four flapping wings. In addition, the system model is analyzed, and based on this, the robot motion and posture control are realized by a proportional-integral-derivative and active disturbance rejection based controller. Lastly, a physical prototype was made, and its feasibility was verified through flight experiments in indoor venues.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bio-inspired interlocking metasurfaces.","authors":"Ophelia Bolmin, Philip J Noell, Brad L Boyce","doi":"10.1088/1748-3190/adadbb","DOIUrl":"10.1088/1748-3190/adadbb","url":null,"abstract":"<p><p>Interlocking metasurfaces (ILMs) are patterned arrays of mating features that enable the joining of bodies by constraining motion and transmitting force. They offer an alternative to traditional joining solutions such as mechanical fasteners, welds, and adhesives. This study explores the development of bio-inspired ILMs using a problem-driven bioinspired design (BID) framework. We develop a taxonomy of attachment solutions that considers both biological and engineered systems and derive conventional design principles for ILM design. We conceptualize two engineering implementations to demonstrate concept development using the taxonomy and ILM conventional design principle through the BID framework: one for rapidly assembled bridge truss members and another for modular microrobots. These implementations highlight the potential of BID to enhance performance, functionality, and tunability in ILMs.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
He Cai, Hao Wang, Zixin Bei, Dongkuan Zhou, Huanli Gao
{"title":"Biomimetic swarm fission driven algorithm with preassigned target subgroup size.","authors":"He Cai, Hao Wang, Zixin Bei, Dongkuan Zhou, Huanli Gao","doi":"10.1088/1748-3190/adaff5","DOIUrl":"10.1088/1748-3190/adaff5","url":null,"abstract":"<p><p>Inspired by killer whale hunting strategies, this study presents a biomimetic algorithm for controlled subgroup fission in swarms. The swarm agents adopt the classic social force model with some practical modifications. The proposed algorithm consists of three phases: cluster selection phase via a constrained K-means algorithm, driven phase with strategic agent movement, including center pushing, coordinated oscillation, and flank pushing by specialized driven agents, and judgment phase confirming subgroup separation using the Kruskal algorithm. Simulation results confirm the algorithm's high success rate and efficiency in subgroup division, demonstrating its potential for advancing swarm-based technologies.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Ernest Winter, Janine Schoombie, Lelanie Smith
{"title":"A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight.","authors":"Alexander Ernest Winter, Janine Schoombie, Lelanie Smith","doi":"10.1088/1748-3190/adaff4","DOIUrl":"10.1088/1748-3190/adaff4","url":null,"abstract":"<p><p>Limited research exists on the 3D geometric models and as a consequence the aerodynamic characteristics of the grey-headed albatross (GHA). Despite existing methods for extracting bird wing cross-sections, few studies consider deflections due to aerodynamic pressure. With the GHA known for its exceptional flight speed and purported wing-lock mechanism, it offers a valuable subject for studying fixed-wing aerodynamics in nature. This study aims to develop and validate a numerical approach to estimate the GHA's wing cross-section in flight. The PARSEC method is combined with a scanned 3D point cloud of a dried GHA wing to create a 3D model and analyse an averaged aerofoil section. Using a pseudo-2D computational fluid dynamics model, the study explores passive morphing of bird wings due to aerodynamic pressure. Results show that the aerofoil morphs to achieve maximum potential aerodynamic efficiency at a Reynolds number of2×105, decreasing in camber. The maximum lift-to-drag ratio ((CL/CD)max) increases from 3 to 44, primarily due to pressure drag reduction. However, the lack of comparison to true bird geometry in flight remains a limitation. Future research should compare the predicted morphing with actual bird specimens in flight.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}