{"title":"从甲虫到机器人:基于鹿角甲虫下颌骨生物力学的仿生机械手设计。","authors":"Mahdi Rajabi, Sepehr H Eraghi, Arman Toofani, Shayan Ramezanpour, Preenjot Singh, Jianing Wu, Chung-Ping Lin, Hamed Rajabi","doi":"10.1088/1748-3190/ae0547","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional rigid grippers remain the most-used robotic grippers in industrial assembly tasks. However, they are limited in their ability to handle a diverse range of objects. This study draws inspiration from nature to address these limitations, employing multidisciplinary methods, such as computer-aided design, parametric modeling, finite element analysis, 3D printing, and mechanical testing. Computational analysis of three distinct mandible morphs from the stag beetle<i>Cyclommatus mniszechi</i>revealed that key geometric features-specifically mandible curvature and denticle arrangement-govern a functional trade-off between grasping ability and structural safety. This analysis identified a specific morphology optimized for superior grabbing performance, which served as the template for our design. Leveraging these biological principles, we used parametric modeling to design, and 3D printing to fabricate, a series of novel, mechanically intelligent grippers. Mechanical testing of these prototypes validated our design approach, demonstrating that specific modifications to curvature could significantly enhance the gripper's load-bearing capacity while minimizing object damage. This work establishes a clear pathway from biomechanical analysis to engineered application, offering a robust and cost-efficient blueprint for developing next-generation grippers that operate effectively without complex sensing or actuation systems for tasks in manufacturing, logistics, and healthcare.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From beetle to bot: bioinspired design of robotic grippers based on stag beetle mandible biomechanics.\",\"authors\":\"Mahdi Rajabi, Sepehr H Eraghi, Arman Toofani, Shayan Ramezanpour, Preenjot Singh, Jianing Wu, Chung-Ping Lin, Hamed Rajabi\",\"doi\":\"10.1088/1748-3190/ae0547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional rigid grippers remain the most-used robotic grippers in industrial assembly tasks. However, they are limited in their ability to handle a diverse range of objects. This study draws inspiration from nature to address these limitations, employing multidisciplinary methods, such as computer-aided design, parametric modeling, finite element analysis, 3D printing, and mechanical testing. Computational analysis of three distinct mandible morphs from the stag beetle<i>Cyclommatus mniszechi</i>revealed that key geometric features-specifically mandible curvature and denticle arrangement-govern a functional trade-off between grasping ability and structural safety. This analysis identified a specific morphology optimized for superior grabbing performance, which served as the template for our design. Leveraging these biological principles, we used parametric modeling to design, and 3D printing to fabricate, a series of novel, mechanically intelligent grippers. Mechanical testing of these prototypes validated our design approach, demonstrating that specific modifications to curvature could significantly enhance the gripper's load-bearing capacity while minimizing object damage. This work establishes a clear pathway from biomechanical analysis to engineered application, offering a robust and cost-efficient blueprint for developing next-generation grippers that operate effectively without complex sensing or actuation systems for tasks in manufacturing, logistics, and healthcare.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ae0547\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ae0547","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
From beetle to bot: bioinspired design of robotic grippers based on stag beetle mandible biomechanics.
Conventional rigid grippers remain the most-used robotic grippers in industrial assembly tasks. However, they are limited in their ability to handle a diverse range of objects. This study draws inspiration from nature to address these limitations, employing multidisciplinary methods, such as computer-aided design, parametric modeling, finite element analysis, 3D printing, and mechanical testing. Computational analysis of three distinct mandible morphs from the stag beetleCyclommatus mniszechirevealed that key geometric features-specifically mandible curvature and denticle arrangement-govern a functional trade-off between grasping ability and structural safety. This analysis identified a specific morphology optimized for superior grabbing performance, which served as the template for our design. Leveraging these biological principles, we used parametric modeling to design, and 3D printing to fabricate, a series of novel, mechanically intelligent grippers. Mechanical testing of these prototypes validated our design approach, demonstrating that specific modifications to curvature could significantly enhance the gripper's load-bearing capacity while minimizing object damage. This work establishes a clear pathway from biomechanical analysis to engineered application, offering a robust and cost-efficient blueprint for developing next-generation grippers that operate effectively without complex sensing or actuation systems for tasks in manufacturing, logistics, and healthcare.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.