Samane Amini, Iman Kardan, Ajay Seth, Alireza Akbarzadeh
{"title":"Empowering human-like walking with a bio-inspired gait controller for an under-actuated torque- driven human model.","authors":"Samane Amini, Iman Kardan, Ajay Seth, Alireza Akbarzadeh","doi":"10.1088/1748-3190/adb2ca","DOIUrl":"https://doi.org/10.1088/1748-3190/adb2ca","url":null,"abstract":"<p><p>Human gait simulation plays a crucial role in providing insights into various aspects of locomotion, such as diagnosing injuries and impairments, assessing abnormal gait patterns, and developing assistive and rehabilitation technologies. To achieve more realistic gait simulation results, it's essential to use a comprehensive model that accurately replicates the kinematics and kinetics of human movement. The human skeletal models in OpenSim software provide anatomically accurate and anthropomorphic structures, enabling users to create personalized models that accurately replicate individual human behavior. However, these torque-driven models encounter challenges in stabilizing unactuated degrees of freedom of pelvis tilt during forward dynamic simulations. Adopting a bio-inspired strategy that ensures human balance with a minimized energy expenditure during walking, this paper addresses a gait controller for a torque-deriven human skeletal model to achieve a stable walking. The proposed controller employs a nonlinear model-based approach to calculate a balance-equivalent control torque and utilizes the hip-ankle strategy to distribute this torque across the lower-limb joints during the stance phase. To optimize the parameters of the trajectory tracking controller and the balance distribution coefficients, we used a forward dynamic simulation interface established between MATLAB and OpenSim. The simulation results show that the torque-driven model achieves a natural gait, with joint torques closely aligning with the experimental data. The robustness of the bio-inspired gait controller is also assessed by applying a range of external forces on the skeletal model to investigate its response to disturbances. The robustness analysis demonstrates the quick and effective balance recovery mechanism of the proposed bio-inspired gait controller.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inspired by the growth behavior of plants: biomimetic soft robots that just meet the requirements of use.","authors":"Liu Yang, Liu Fang, Zengzhi Zhang","doi":"10.1088/1748-3190/adae6c","DOIUrl":"10.1088/1748-3190/adae6c","url":null,"abstract":"<p><p>Soft robots are usually manufactured using the pouring method and can only be configured with a fixed execution area, which often faces the problem of insufficient or wasteful performance in real-world applications, and cannot be reused for other tasks. In order to overcome this limitation, we propose a simple and controllable rather than redesigned method inspired by the bionic growth behavior of plants, and prepare bionic soft robots that can just meet the requirements of use, and transform biological intelligence into mechanical intelligence. Based on finite element method, we establish a theoretical model of soft robot performance. And the experimental platform is designed to conduct experimental research on the prototype of the soft robot. Compared with the results obtained through the theoretical model, it is found out that the experimental bending angle and elongation are slightly smaller than the simulation results. (The maximum error of elongation prediction for soft robots (Fashion 1-4) is 5.7%, 5.9%, 6%, and 6%, and the maximum error of bending angle prediction is 7.1%, 7.5%, 7.6%, and 7.6%, respectively). The high consistence between our theoretical model and the experimental results shows that the theoretical model is applicable to accurately predict the performance of soft robots. It is worth pointing out that this design as proposed in this paper can be extended to the wider field of soft robotics as a generic one.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visual collective behaviors on spherical robots.","authors":"Diego Castro, Christophe Eloy, Franck Ruffier","doi":"10.1088/1748-3190/adaab9","DOIUrl":"10.1088/1748-3190/adaab9","url":null,"abstract":"<p><p>The implementation of collective motion, traditionally, disregard the limited sensing capabilities of an individual, to instead assuming an omniscient perception of the environment. This study implements a visual flocking model in a 'robot-in-the-loop' approach to reproduce these behaviors with a flock composed of 10 independent spherical robots. The model achieves robotic collective motion by only using panoramic visual information of each robot, such as retinal position, optical size and optic flow of the neighboring robots. We introduce a virtual anchor to confine the collective robotic movements so to avoid wall interactions. For the first time, a simple visual robot-in-the-loop approach succeed in reproducing several collective motion phases, in particular, swarming, and milling. Another milestone achieved with by this model is bridging the gap between simulation and physical experiments by demonstrating nearly identical behaviors in both environments with the same visual model. To conclude, we show that our minimal visual collective motion model is sufficient to recreate most collective behaviors on a robot-in-the-loop system that be implemented using several individuals, behaves as numerical simulations predict and is easily comparable to traditional models.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the design characteristics and parameter laws of bird-like flapping-wing aerial vehicles from the perspective of scaling.","authors":"Dongfu Ma, Bifeng Song, Jianing Cao, Jiaxin Wang, Jianlin Xuan, Xia Liu","doi":"10.1088/1748-3190/adadbc","DOIUrl":"10.1088/1748-3190/adadbc","url":null,"abstract":"<p><p>Bird-like flapping-wing aerial vehicles (BFAVs) represent a significant advancement in the application of bird biology to aircraft design, with scaling analysis serving as an effective tool for identifying this design process. From the perspective of aviation designers, this paper systematically organizes the scaling laws of birds that are closely related to the design of BFAVs. An intriguing topic further explored is the comparison between birds and BFAVs from the standpoint of scaling, along with an examination of the differences in relevant design parameters. This analysis aims to enhance communication between biologists and engineers, ultimately fostering the development of improved bionic systems. By introducing the concept of periodic average angular velocity, both frequency and amplitude are uniformly considered, providing a clearer explanation of the design characteristics of BFAVs. Finally, a method for establishing the initial parameters based on the scaling laws of BFAVs is proposed, and its effectiveness is validated through design cases, offering a novel approach for the development of new prototypes.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and control of a sperm-inspired robot with helical propulsion.","authors":"Liangwei Deng, Chao Zhou, Zhuoliang Zhang, Xiaocun Liao, Junfeng Fan, Xiaofei Wang, Jiaming Zhang","doi":"10.1088/1748-3190/adaaba","DOIUrl":"10.1088/1748-3190/adaaba","url":null,"abstract":"<p><p>Efficient propulsion has been a central focus of research in the field of biomimetic underwater vehicles. Compared to the prevalent fish-like reciprocating flapping propulsion mode, the sperm-like helical propulsion mode features higher efficiency and superior performance in high-viscosity environments. Based on the previously developed sperm-inspired robot, this paper focuses on its dynamic modeling and depth control research. The helical propulsion performance of the sperm-inspired robot is analyzed by resistance-theory-based force analysis, followed by the application of Kirchhoff rod theory to determine the helical waveform parameters. The dynamic model of the sperm-inspired robot is established using the Kirchhoff equation, and its validity is verified through experiments. To enhance the practical application capability of the sperm-inspired robot, this study develops an active disturbance rejection control depth controller for roll-spin coupling motion based on the constructed dynamics model. The effectiveness of the controller is thoroughly validated through a combination of simulation and experiment. Experimental results demonstrate the excellent depth control ability of the robot, with an average depth error controlled within 0.19 cm. This superior performance lays a foundation for the future application of our robot in underwater operations.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tailless control of a four-winged flapping-wing micro air vehicle with wing twist modulation.","authors":"Heetae Park, Seungkeun Kim, Jinyoung Suk","doi":"10.1088/1748-3190/adab52","DOIUrl":"10.1088/1748-3190/adab52","url":null,"abstract":"<p><p>This paper describes the tailless control system design of a flapping-wing micro air vehicle in a four-winged configuration, which can provide high control authority to be stable and agile in flight conditions from hovering to maneuvering flights. The tailless control system consists of variable flapping frequency and wing twist modulation. The variable flapping frequency creates rolling moments through differential vertical force from flapping mechanisms that can be independently driven on the left and right sides. The wing twist modulation changes wing tension, resulting in vertical and horizontal force variations during one flap cycle and generating pitching and yaw moments. We presume that the wing geometry and implementation method of wing-root actuation are related to the control authority of wing twist modulation. Then, the control system's performance is analyzed for various wing geometries and implementation methods, including wing length, leading-edge thickness, camber angle, and vein configuration. Furthermore, the cross-coupling effect is examined for the wing twist modulation, and a control surface interconnect is designed to compensate for the decrease of pitch control authority and adverse rolling moment. The refined wing and control mechanism demonstrated its high control authority without significant loss of vertical force and power efficiency. The flight experiments validated that the control system based on wing twist modulation is suitable for four-winged flapping-wing micro air vehicles, providing sufficient control moment and minimizing the cross-coupling effect.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elephant-inspired tapered cable-driven hyper-redundant manipulator: design and performance analysis.","authors":"Zhuo Chen, Hua Zhang, Xinbin Zhang, Jianwen Huo, Liguo Tan, Manlu Liu","doi":"10.1088/1748-3190/ada907","DOIUrl":"10.1088/1748-3190/ada907","url":null,"abstract":"<p><p>The cable-driven hyper-redundant manipulator (CDHM), distinguished by its high flexibility and adjustable stiffness, is extensively utilized in confined and obstacle-rich environments such as aerospace and nuclear facilities. This paper introduces a novel CDHM inspired by the trunk of elephants, which changes the arm structure from cylindrical to conical. This alteration diminishes the arm's self-weight, reduces the moment arm of gravity, decreases the volume of the end joint, narrows the stroke of the driving cables, and boosts the maximum joint speed of the manipulator. Additionally, this study examines the impact of the manipulator's taper on its overall performance from both dynamic and kinematic perspectives. Finally, three prototype manipulators with varying tapers are confirmed, and tests are conducted on each manipulator's motion performance and cable tension. By comparing experimental data, the accuracy of the theoretical analysis and the rationality of the conical structure are confirmed. The results suggest that the proposed new configuration offers certain advantages in terms of cable stroke, joint speed and maximum driving force.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zixuan Li, Long Cui, Hongwei Wang, Feng Zhang, Zhaoming Liu, Geng Wang
{"title":"Insect-inspired passive wing collision recovery in flapping wing microrobots.","authors":"Zixuan Li, Long Cui, Hongwei Wang, Feng Zhang, Zhaoming Liu, Geng Wang","doi":"10.1088/1748-3190/ada906","DOIUrl":"10.1088/1748-3190/ada906","url":null,"abstract":"<p><p>Flying insects have developed two distinct adaptive strategies to minimize wing damage during collisions. One strategy includes an elastic joint at the leading edge, which is evident in wasps and beetles, while another strategy features an adaptive and deformable leading edge, as seen in bumblebees and honeybees. Inspired by the latter, a novel approach has been developed for improving collision recovery in micro aerial vehicles (MAVs) by mimicking the principle of stiffness anisotropy present in the leading edges of these insects. This study introduces a passive, flexible, folding wing design with adaptive leading edges. The impact of these adaptive folding leading edges on the flight performance of flapping-wing MAVs was systematically evaluated. Variations in lift generation and obstacle-crossing capabilities between rigid wings and adaptive deformable wings were quantified. Additionally, the mechanical stiffness of the wings was assessed to validate their functional effectiveness. The proposed mechanism was incorporated into the wings of a dual-layer flapping-wing robot, which demonstrated successful flight recovery after collision. The experimental results indicate that a robot with a 30 cm wingspan can effectively traverse a gap of 16.2 cm during flight, thereby demonstrating its enhanced ability to overcome collision challenges. These findings underscore the potential of adaptive wing designs in enhancing the resilience and performance of MAVs in dynamic environments.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yishi Shen, Yi Xu, Shi Zhang, Tianyi Chen, Weimin Huang, Qing Shi
{"title":"Aerodynamic analysis of complex flapping motions based on free-flight biological data.","authors":"Yishi Shen, Yi Xu, Shi Zhang, Tianyi Chen, Weimin Huang, Qing Shi","doi":"10.1088/1748-3190/ada85c","DOIUrl":"10.1088/1748-3190/ada85c","url":null,"abstract":"<p><p>The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, the specific impact of these motions on the aerodynamic performance of wings throughout the wingbeat cycle, and their potential to inform engineering applications, remains insufficiently explored. To bridge this gap and better incorporate the properties of coupled motions into the design of biomimetic aircraft, we present a numerical investigation of four flapping-based coupled motions during different flight phases (i.e. take-off, level flight, and landing) using a pigeon-like airfoil model. The wingbeat motion data for these four coupled motions were based on real flying pigeons and divided into: flap-bending, flap-folding, flap-sweeping, and flap-twisting. We used computational fluid dynamic simulations to study the effects of these coupled motions on the flow field, generation of transient aerodynamic forces, and work done by different motions on flapping. It was found that, first, the flap-bending motion causes unstable changes in the effective angle of attack (AoA), which affects the attachment of the leading-edge vortex (LEV), thereby producing more lift at smaller bending angles. Next, the flap-folding motion causes the LEV to attach to the wing earlier and regulates the detachment of vortices. Significant changes in the folding angle are used to influence lift generation and the flap-sweeping motion has minimal effect on the flow field structure across the three flight phases. Finally, flap-twisting motion leads to notable changes in the effective AoA, allowing for dynamic adjustments to control aerodynamics at different stroke stages, resulting in less drag during take-off and more drag during landing. This study enhances the understanding of the aerodynamic performance of bird with coupled motions in different flight phases and provides theoretical guidance for the design of bionic flapping-wing aircraft with multi-degree-of-freedom wings.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Li, Chunze Zhang, Guibin Zhang, Qin Zhou, Ji Hou, Wei Diao, Wanwan Meng, Xujin Zhang
{"title":"Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks.","authors":"Tao Li, Chunze Zhang, Guibin Zhang, Qin Zhou, Ji Hou, Wei Diao, Wanwan Meng, Xujin Zhang","doi":"10.1088/1748-3190/ada59c","DOIUrl":"10.1088/1748-3190/ada59c","url":null,"abstract":"<p><p>The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics has emerged and been applied to simulate the fish's adaptive swimming behaviour, where the complex fish behaviour is decoupled to focus on the fish's response to the hydrodynamic field, and the simulation is driven by reward-based objectives to model the fish's swimming behaviour. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model. To promote it to more general application scenarios, there is a pressing need for further research on more efficient and economical network architectures to address the challenge of approximating state-value function in high-dimensional, dynamic, and uncertain environments. Building upon a previously proposed computational platform for the simulation of fish autonomous swimming behaviour, we integrated Kolmogorov-Arnold Networks(KANs) and tested their performance in point-to-point swimming and Kármán gait swimming environments. Experimental results demonstrated that, compared to long short-term memory Networks(LSTMs) and multilayer perceptron networks(MLPs), the introduction of KANs significantly enhanced the perception and decision-making abilities of the intelligent fish in complex fluid environments. With a smaller network scale, in the point-to-point swimming case, KANs effectively approximated the state-value function, achieving average reward improvements of up to 88.0% and 94.1% over MLPs and LSTMs networks, respectively, and increased by 766.7% and 105.6% in the Kármán gait swimming case. Under comparable network sizes, the intelligent fish with KANs exhibited faster learning capabilities and more stable swimming performance in complex fluid settings.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}