{"title":"Design and experiments of a humanoid torso based on biological features.","authors":"Wenshuo Gao, Zhiwei Tian","doi":"10.1088/1748-3190/adadba","DOIUrl":null,"url":null,"abstract":"<p><p>Among the components of a humanoid robot, a humanoid torso plays a vital role in supporting a humanoid robot to complete the desired motions. In this paper, a new LARMbot torso is developed to obtain better working performance based on biological features. By analyzing the anatomy of a human torso and spine, a parallel cable-driven mechanism is proposed to actuate the whole structure using two servo motors and two pulleys. Analysis is conducted to evaluate the properties of the proposed parallel cable-driven mechanism. A closed-loop control system is applied to control the whole LARMbot torso. Experiments are performed using the manufactured prototype in three modes to evaluate the characterizations of the proposed design. Results show that the proposed LARMbot can complete the desired motions properly, including two general human-like motions and a full rotation motion. When completing two general human-like motions, the maximum bending angle is 40 degrees. The maximum cable tension is 0.68 N, and the maximum required power is 18.3 W. In full rotation motion, the maximum bending angle is 30 degrees. The maximum cable tension is 0.75 N, and the maximum power required is 20.5 W. The proposed design is simplified and lightweight, with low energy consumption and flexible spatial motion performance that can meet the requirements of the humanoid robot torso's application in complex scenarios and commercial requirements.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adadba","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Among the components of a humanoid robot, a humanoid torso plays a vital role in supporting a humanoid robot to complete the desired motions. In this paper, a new LARMbot torso is developed to obtain better working performance based on biological features. By analyzing the anatomy of a human torso and spine, a parallel cable-driven mechanism is proposed to actuate the whole structure using two servo motors and two pulleys. Analysis is conducted to evaluate the properties of the proposed parallel cable-driven mechanism. A closed-loop control system is applied to control the whole LARMbot torso. Experiments are performed using the manufactured prototype in three modes to evaluate the characterizations of the proposed design. Results show that the proposed LARMbot can complete the desired motions properly, including two general human-like motions and a full rotation motion. When completing two general human-like motions, the maximum bending angle is 40 degrees. The maximum cable tension is 0.68 N, and the maximum required power is 18.3 W. In full rotation motion, the maximum bending angle is 30 degrees. The maximum cable tension is 0.75 N, and the maximum power required is 20.5 W. The proposed design is simplified and lightweight, with low energy consumption and flexible spatial motion performance that can meet the requirements of the humanoid robot torso's application in complex scenarios and commercial requirements.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.