CPG-based neural control of peristaltic planar locomotion in an earthworm-like robot: evaluation of nonlinear oscillators.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Qinyan Zhou, Peisen Jia, Hongbin Fang
{"title":"CPG-based neural control of peristaltic planar locomotion in an earthworm-like robot: evaluation of nonlinear oscillators.","authors":"Qinyan Zhou, Peisen Jia, Hongbin Fang","doi":"10.1088/1748-3190/adb407","DOIUrl":null,"url":null,"abstract":"<p><p>Earthworm-like robots have excellent locomotion capability in confined environments. Central pattern generator (CPG) based controllers utilize the dynamics of coupled nonlinear oscillators to spontaneously generate actuation signals for all segments, which offer significant merits over conventional locomotion control strategies. There are a number of oscillators that can be exploited for CPG control, while their performance in controlling peristaltic locomotion has not been systematically evaluated. To advance the state of the art, this study comprehensively evaluates the performance of four widely used nonlinear oscillators-Hopf, Van der Pol (VDP), Matsuoka, and Kuramoto-in controlling the planar locomotion of metameric earthworm-like robots. Specifically, the amplitude and phase characteristics of the continuous control signals used by the robot for achieving rectilinear, sidewinding, and arcuate locomotion are first summarized. On this basis, the sufficient parametric conditions for the four oscillator networks to generate the corresponding control signals are derived. Using a six-segment earthworm-like robot prototype as a platform, experiments confirm that the signals output by these oscillator networks can effectively control the robot to achieve the specified planar motion. Furthermore, the effects of the output signal waveforms of different oscillator networks on locomotion trajectories and performance metrics, as well as the effects of transient dynamics on the smoothness of gait transitions when the parameters are varied, are analyzed. The results demonstrate that their applicability varies in terms of locomotion efficiency, trajectory modulation, and smooth gait transitions. The Matsuoka oscillator lacks explicit rules for parameter modulation, the VDP oscillator is advantageous in enhancing the average speed and turning efficiency, and the Hopf and Kuramoto oscillators are advantageous in terms of smooth gait transition. These findings provide valuable insights into the selection of appropriate oscillators in CPG-based controllers and lay the foundation for future CPG-based adaptive control of earthworm-like robots in complex environments.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adb407","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Earthworm-like robots have excellent locomotion capability in confined environments. Central pattern generator (CPG) based controllers utilize the dynamics of coupled nonlinear oscillators to spontaneously generate actuation signals for all segments, which offer significant merits over conventional locomotion control strategies. There are a number of oscillators that can be exploited for CPG control, while their performance in controlling peristaltic locomotion has not been systematically evaluated. To advance the state of the art, this study comprehensively evaluates the performance of four widely used nonlinear oscillators-Hopf, Van der Pol (VDP), Matsuoka, and Kuramoto-in controlling the planar locomotion of metameric earthworm-like robots. Specifically, the amplitude and phase characteristics of the continuous control signals used by the robot for achieving rectilinear, sidewinding, and arcuate locomotion are first summarized. On this basis, the sufficient parametric conditions for the four oscillator networks to generate the corresponding control signals are derived. Using a six-segment earthworm-like robot prototype as a platform, experiments confirm that the signals output by these oscillator networks can effectively control the robot to achieve the specified planar motion. Furthermore, the effects of the output signal waveforms of different oscillator networks on locomotion trajectories and performance metrics, as well as the effects of transient dynamics on the smoothness of gait transitions when the parameters are varied, are analyzed. The results demonstrate that their applicability varies in terms of locomotion efficiency, trajectory modulation, and smooth gait transitions. The Matsuoka oscillator lacks explicit rules for parameter modulation, the VDP oscillator is advantageous in enhancing the average speed and turning efficiency, and the Hopf and Kuramoto oscillators are advantageous in terms of smooth gait transition. These findings provide valuable insights into the selection of appropriate oscillators in CPG-based controllers and lay the foundation for future CPG-based adaptive control of earthworm-like robots in complex environments.

基于CPG的类蚯蚓机器人蠕动平面运动神经控制:对非线性振荡器的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信