{"title":"CPG-based neural control of peristaltic planar locomotion in an earthworm-like robot: evaluation of nonlinear oscillators.","authors":"Qinyan Zhou, Peisen Jia, Hongbin Fang","doi":"10.1088/1748-3190/adb407","DOIUrl":null,"url":null,"abstract":"<p><p>Earthworm-like robots have excellent locomotion capability in confined environments. Central pattern generator (CPG) based controllers utilize the dynamics of coupled nonlinear oscillators to spontaneously generate actuation signals for all segments, which offer significant merits over conventional locomotion control strategies. There are a number of oscillators that can be exploited for CPG control, while their performance in controlling peristaltic locomotion has not been systematically evaluated. To advance the state of the art, this study comprehensively evaluates the performance of four widely used nonlinear oscillators-Hopf, Van der Pol (VDP), Matsuoka, and Kuramoto-in controlling the planar locomotion of metameric earthworm-like robots. Specifically, the amplitude and phase characteristics of the continuous control signals used by the robot for achieving rectilinear, sidewinding, and arcuate locomotion are first summarized. On this basis, the sufficient parametric conditions for the four oscillator networks to generate the corresponding control signals are derived. Using a six-segment earthworm-like robot prototype as a platform, experiments confirm that the signals output by these oscillator networks can effectively control the robot to achieve the specified planar motion. Furthermore, the effects of the output signal waveforms of different oscillator networks on locomotion trajectories and performance metrics, as well as the effects of transient dynamics on the smoothness of gait transitions when the parameters are varied, are analyzed. The results demonstrate that their applicability varies in terms of locomotion efficiency, trajectory modulation, and smooth gait transitions. The Matsuoka oscillator lacks explicit rules for parameter modulation, the VDP oscillator is advantageous in enhancing the average speed and turning efficiency, and the Hopf and Kuramoto oscillators are advantageous in terms of smooth gait transition. These findings provide valuable insights into the selection of appropriate oscillators in CPG-based controllers and lay the foundation for future CPG-based adaptive control of earthworm-like robots in complex environments.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adb407","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Earthworm-like robots have excellent locomotion capability in confined environments. Central pattern generator (CPG) based controllers utilize the dynamics of coupled nonlinear oscillators to spontaneously generate actuation signals for all segments, which offer significant merits over conventional locomotion control strategies. There are a number of oscillators that can be exploited for CPG control, while their performance in controlling peristaltic locomotion has not been systematically evaluated. To advance the state of the art, this study comprehensively evaluates the performance of four widely used nonlinear oscillators-Hopf, Van der Pol (VDP), Matsuoka, and Kuramoto-in controlling the planar locomotion of metameric earthworm-like robots. Specifically, the amplitude and phase characteristics of the continuous control signals used by the robot for achieving rectilinear, sidewinding, and arcuate locomotion are first summarized. On this basis, the sufficient parametric conditions for the four oscillator networks to generate the corresponding control signals are derived. Using a six-segment earthworm-like robot prototype as a platform, experiments confirm that the signals output by these oscillator networks can effectively control the robot to achieve the specified planar motion. Furthermore, the effects of the output signal waveforms of different oscillator networks on locomotion trajectories and performance metrics, as well as the effects of transient dynamics on the smoothness of gait transitions when the parameters are varied, are analyzed. The results demonstrate that their applicability varies in terms of locomotion efficiency, trajectory modulation, and smooth gait transitions. The Matsuoka oscillator lacks explicit rules for parameter modulation, the VDP oscillator is advantageous in enhancing the average speed and turning efficiency, and the Hopf and Kuramoto oscillators are advantageous in terms of smooth gait transition. These findings provide valuable insights into the selection of appropriate oscillators in CPG-based controllers and lay the foundation for future CPG-based adaptive control of earthworm-like robots in complex environments.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.