Alyssa M Hernandez, Jessica A Sandoval, Michelle C Yuen, Robert J Wood
{"title":"Stickiness in shear: stiffness, shape, and sealing in bioinspired suction cups affect shear performance on diverse surfaces.","authors":"Alyssa M Hernandez, Jessica A Sandoval, Michelle C Yuen, Robert J Wood","doi":"10.1088/1748-3190/ad2c21","DOIUrl":"10.1088/1748-3190/ad2c21","url":null,"abstract":"<p><p>Aquatic organisms utilizing attachment often contend with unpredictable environments that can dislodge them from substrates. To counter these forces, many organisms (e.g. fish, cephalopods) have evolved suction-based organs for adhesion. Morphology is diverse, with some disc shapes deviating from a circle to more ovate designs. Inspired by the diversity of multiple aquatic species, we investigated how bioinspired cups with different disc shapes performed in shear loading conditions. These experiments highlighted pertinent physical characteristics found in biological discs (regions of stiffness, flattened margins, a sealing rim), as well as ecologically relevant shearing conditions. Disc shapes of fabricated cups included a standard circle, ellipses, and other bioinspired designs. To consider the effects of sealing, these stiff silicone cups were produced with and without a soft rim. Cups were tested using a force-sensing robotic arm, which directionally sheared them across surfaces of varying roughness and compliance in wet conditions while measuring force. In multiple surface and shearing conditions, elliptical and teardrop shapes outperformed the circle, which suggests that disc shape and distribution of stiffness may play an important role in resisting shear. Additionally, incorporating a soft rim increased cup performance on rougher substrates, highlighting interactions between the cup materials and surfaces asperities. To better understand how these cup designs may resist shear, we also utilized a visualization technique (frustrated total internal reflection; FTIR) to quantify how contact area evolves as the cup is sheared.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"19 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Landing and take-off capabilities of bioinspired aerial vehicles: a review.","authors":"Ahmad Hammad, Sophie F Armanini","doi":"10.1088/1748-3190/ad3263","DOIUrl":"10.1088/1748-3190/ad3263","url":null,"abstract":"<p><p>Bioinspired flapping-wing micro aerial vehicles (FWMAVs) have emerged over the last two decades as a promising new type of robot. Their high thrust-to-weight ratio, versatility, safety, and maneuverability, especially at small scales, could make them more suitable than fixed-wing and multi-rotor vehicles for various applications, especially in cluttered, confined environments and in close proximity to humans, flora, and fauna. Unlike natural flyers, however, most FWMAVs currently have limited take-off and landing capabilities. Natural flyers are able to take off and land effortlessly from a wide variety of surfaces and in complex environments. Mimicking such capabilities on flapping-wing robots would considerably enhance their practical usage. This review presents an overview of take-off and landing techniques for FWMAVs, covering different approaches and mechanism designs, as well as dynamics and control aspects. The special case of perching is also included. As well as discussing solutions investigated for FWMAVs specifically, we also present solutions that have been developed for different types of robots but may be applicable to flapping-wing ones. Different approaches are compared and their suitability for different applications and types of robots is assessed. Moreover, research and technology gaps are identified, and promising future work directions are identified.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Houssaye, C Etienne, Y Gallic, F Rocchia, J Chaves-Jacob
{"title":"How can research on modern and fossil bones help us build more resistant columns?","authors":"A Houssaye, C Etienne, Y Gallic, F Rocchia, J Chaves-Jacob","doi":"10.1088/1748-3190/ad311f","DOIUrl":"10.1088/1748-3190/ad311f","url":null,"abstract":"<p><p>Bone is an economical material. Indeed, as moving a heavy skeleton is energetically costly, the vertebrate skeleton is adapted to maximise resistance to the stresses imposed with a minimum amount of material, so that bone tissue is deposited where it is needed. Using bone as a source of inspiration should therefore reduce the manufacturing cost (both financial and ecological) and increase the strength (and lifespan) of bioinspired (BI) structures. This study proposes to investigate which adaptive features of the outer shape and inner structure of bone, related to compressive strength, could be used to build BI support structures. To do so, we explain the choice of the bones to be analysed and present the results of the biomechanical analyses (finite element analysis) carried out on virtual models built from the structures of the different bone models and of the mechanical tests carried out on 3D-printed versions of these models. The compressive strength of these direct bone BI columns was compared with each other, and with those of a conventional filled cylindrical column, and of a cylindrical column whose internal structure is BI from the radius of the white rhinoceros. The results of our comparative analyses highlight that the shape of long bones is less effective than a cylinder in resisting compression but underline the relevance in designing BI cylindrical columns with heterogeneous structures inspired by the radius of the white rhinoceros and the tibia of the Asian elephant, and raise the interest in studying the fossil record using the radius of the giant rhinocerotoid<i>Paraceratherium</i>.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guangming Chen, Long Qiao, Zhenwen Zhou, Xiang Lei, Meng Zou, Lutz Richter, Aihong Ji
{"title":"Biomimetic lizard robot for adapting to Martian surface terrain.","authors":"Guangming Chen, Long Qiao, Zhenwen Zhou, Xiang Lei, Meng Zou, Lutz Richter, Aihong Ji","doi":"10.1088/1748-3190/ad311d","DOIUrl":"10.1088/1748-3190/ad311d","url":null,"abstract":"<p><p>The exploration of the planet Mars still is a top priority in planetary science. The Mars surface is extensively covered with soil-like material. Current wheeled rovers on Mars have been occasionally experiencing immobilization instances in unexpectedly weak terrains. The development of Mars rovers adaptable to these terrains is instrumental in improving exploration efficiency. Inspired by locomotion of the desert lizard, this paper illustrates a biomimetic quadruped robot with structures of flexible active spine and toes. By accounting for spine lateral flexion and its coordination with four leg movements, three gaits of tripod, trot and turning are designed. The motions corresponding to the three gaits are conceptually and numerically analyzed. On the granular terrains analog to Martian surface, the gasping forces by the active toes are estimated. Then traversing tests for the robot to move on Martian soil surface analog with the three gaits were investigated. Moreover, the traversing characteristics for Martian rocky and slope surface analog are analyzed. Results show that the robot can traverse Martian soil surface analog with maximum forward speed 28.13 m s<sup>-1</sup>turning speed 1.94° s<sup>-1</sup>and obstacle height 74.85 mm. The maximum angle for climbing Martian soil slope analog is 28°, corresponding slippery rate 76.8%. It is predicted that this robot can adapt to Martian granular rough terrain with gentle slopes.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Navigation by magnetic signatures in a realistic model of Earth's magnetic field.","authors":"Jeffrey P Gill, Brian K Taylor","doi":"10.1088/1748-3190/ad3120","DOIUrl":"10.1088/1748-3190/ad3120","url":null,"abstract":"<p><p>Certain animal species use the Earth's magnetic field (i.e. magnetoreception) alongside their other sensory modalities to navigate long distances that include continents and oceans. It is hypothesized that several animals use geomagnetic parameters, such as field intensity and inclination, to recognize specific locations or regions, potentially enabling migration without a pre-surveyed map. However, it is unknown how animals use geomagnetic information to generate guidance commands, or where in the world this type of strategy would maximize an animal's fitness. While animal experiments have been invaluable in advancing this area, the phenomenon is difficult to study<i>in vivo</i>or<i>in situ</i>, especially on the global scale where the spatial layout of the geomagnetic field is not constant. Alongside empirical animal experiments, mathematical modeling and simulation are complementary tools that can be used to investigate animal navigation on a global scale, providing insights that can be informative across a number of species. In this study, we present a model in which a simulated animal (i.e. agent) navigates via an algorithm which determines travel heading based on local and goal magnetic signatures (here, combinations of geomagnetic intensity and inclination) in a realistic model of Earth's magnetic field. By varying parameters of the navigation algorithm, different regions of the world can be made more or less reliable to navigate. We present a mathematical analysis of the system. Our results show that certain regions can be navigated effectively using this strategy when these parameters are properly tuned, while other regions may require more complex navigational strategies. In a real animal, parameters such as these could be tuned by evolution for successful navigation in the animal's natural range. These results could also help with developing engineered navigation systems that are less reliant on satellite-based methods.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trevor K Dunt, Kirby S Heck, Kathleen Lyons, Christin T Murphy, Raúl Bayoán Cal, Jennifer A Franck
{"title":"Wavelength-induced shedding frequency modulation of seal whisker inspired cylinders.","authors":"Trevor K Dunt, Kirby S Heck, Kathleen Lyons, Christin T Murphy, Raúl Bayoán Cal, Jennifer A Franck","doi":"10.1088/1748-3190/ad2b04","DOIUrl":"10.1088/1748-3190/ad2b04","url":null,"abstract":"<p><p>The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139914103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hankun Deng, Donghao Li, Kundan Panta, Andrew Wertz, Shashank Priya, Bo Cheng
{"title":"Effects of caudal fin stiffness on optimized forward swimming and turning maneuver in a robotic swimmer.","authors":"Hankun Deng, Donghao Li, Kundan Panta, Andrew Wertz, Shashank Priya, Bo Cheng","doi":"10.1088/1748-3190/ad2f42","DOIUrl":"10.1088/1748-3190/ad2f42","url":null,"abstract":"<p><p>In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (<i>μ</i>Bots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For a<i>μ</i>Bot equipped with each caudal fin (and<i>μ</i>Bot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control of<i>μ</i>Bot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10<sup>-4</sup>Pa m<sup>4</sup>(∼10.6 Hz) and stiffness >10<sup>-4</sup>Pa m<sup>4</sup>(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10<sup>-4</sup>Pa m<sup>4</sup>, with the<i>μ</i>Bot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for the<i>μ</i>Bots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship in<i>μ</i>Bot swimming.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A biomimetic orthogonal flow sensor based on an asymmetric optical fiber sensory structure for marine sensing.","authors":"Yujia Wang, Mingwang Song, Xianping Fu","doi":"10.1088/1748-3190/ad253c","DOIUrl":"10.1088/1748-3190/ad253c","url":null,"abstract":"<p><p>With increasing attention on the world's oceans, a significant amount of research has been focused on the sensing of marine-related parameters in recent years. In this paper, a bioinspired flow sensor with corrosion resistance, anti-interference capability, a portable design structure, easy integration, and directional sensing ability is presented to realize flow speed sensing in open water. The sensor is realized by a flexible artificial cupula that seals one side of an optical fiber acting as an artificial kinocilium. Below the artificial kinocilium, an encapsulated s-tapered optical fiber mimics the fish neuromast sensory mechanism and is supported by a 3D-printed structure that acts as the artificial supporting cell. To characterize the sensor, the optical transmission spectra of the sensory fiber under a set of water flow velocities and four orthogonal directions were monitored. The sensor's peak intensity responses were found to demonstrate flow sensing ability for velocity and direction, proving that this biomimetic portable sensing structure is a promising candidate for flow sensing in marine environments.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139673667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Colorful image reconstruction from neuromorphic event cameras with biologically inspired deep color fusion neural networks.","authors":"Hadar Cohen-Duwek, Elishai Ezra Tsur","doi":"10.1088/1748-3190/ad2a7c","DOIUrl":"10.1088/1748-3190/ad2a7c","url":null,"abstract":"<p><p>Neuromorphic event-based cameras communicate transients in luminance instead of frames, providing visual information with a fine temporal resolution, high dynamic range and high signal-to-noise ratio. Enriching event data with color information allows for the reconstruction of colorful frame-like intensity maps, supporting improved performance and visually appealing results in various computer vision tasks. In this work, we simulated a biologically inspired color fusion system featuring a three-stage convolutional neural network for reconstructing color intensity maps from event data and sparse color cues. While current approaches for color fusion use full RGB frames in high resolution, our design uses event data and low-spatial and tonal-resolution quantized color cues, providing a high-performing small model for efficient colorful image reconstruction. The proposed model outperforms existing coloring schemes in terms of SSIM, LPIPS, PSNR, and CIEDE2000 metrics. We demonstrate that auxiliary limited color information can be used in conjunction with event data to successfully reconstruct both color and intensity frames, paving the way for more efficient hardware designs.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electromechanical enhancement of live jellyfish for ocean exploration.","authors":"Simon R Anuszczyk, John O Dabiri","doi":"10.1088/1748-3190/ad277f","DOIUrl":"10.1088/1748-3190/ad277f","url":null,"abstract":"<p><p>The vast majority of the ocean's volume remains unexplored, in part because of limitations on the vertical range and measurement duration of existing robotic platforms. In light of the accelerating rate of climate change impacts on the physics and biogeochemistry of the ocean, the need for new tools that can measure more of the ocean on faster timescales is becoming pressing. Robotic platforms inspired or enabled by aquatic organisms have the potential to augment conventional technologies for ocean exploration. Recent work demonstrated the feasibility of directly stimulating the muscle tissue of live jellyfish via implanted microelectronics. We present a biohybrid robotic jellyfish that leverages this external electrical swimming control, while also using a 3D printed passive mechanical attachment to streamline the jellyfish shape, increase swimming performance, and significantly enhance payload capacity. A six-meter-tall, 13 600 l saltwater facility was constructed to enable testing of the vertical swimming capabilities of the biohybrid robotic jellyfish over distances exceeding 35 body diameters. We found that the combination of external swimming control and the addition of the mechanical forebody resulted in an increase in swimming speeds to 4.5 times natural jellyfish locomotion. Moreover, the biohybrid jellyfish were capable of carrying a payload volume up to 105% of the jellyfish body volume. The added payload decreased the intracycle acceleration of the biohybrid robots relative to natural jellyfish, which could also facilitate more precise measurements by onboard sensors that depend on consistent platform motion. While many robotic exploration tools are limited by cost, energy expenditure, and varying oceanic environmental conditions, this platform is inexpensive, highly efficient, and benefits from the widespread natural habitats of jellyfish. The demonstrated performance of these biohybrid robots suggests an opportunity to expand the set of robotic tools for comprehensive monitoring of the changing ocean.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}