{"title":"用于无人驾驶飞行器稳定着陆的生物感知探测系统。","authors":"Yupeng Xie, Zhiteng Li, Linkun Song, Jiannan Zhao","doi":"10.1088/1748-3190/ad8d99","DOIUrl":null,"url":null,"abstract":"<p><p>Flying insects, such as flies and bees, have evolved the capability to rely solely on visual cues for smooth and secure landings on various surfaces. In the process of carrying out tasks, micro unmanned aerial vehicles (UAVs) may encounter various emergencies, and it is necessary to land safely in complex and unpredictable ground environments, especially when altitude information is not accurately obtained, which undoubtedly poses a significant challenge. Our study draws on the remarkable response mechanism of the Lobula Giant Movement Detector to looming scenarios to develop a novel UAV landing strategy. The proposed strategy does not require distance estimation, making it particularly suitable for payload-constrained micro aerial vehicles. Through a series of experiments, this strategy has proven to effectively achieve stable and high-performance landings in unknown and complex environments using only a monocular camera. Furthermore, a novel mechanism to trigger the final landing phase has been introduced, further ensuring the safe and stable touchdown of the drone.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bio-inspired looming detection for stable landing in unmanned aerial vehicles<sup />.\",\"authors\":\"Yupeng Xie, Zhiteng Li, Linkun Song, Jiannan Zhao\",\"doi\":\"10.1088/1748-3190/ad8d99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flying insects, such as flies and bees, have evolved the capability to rely solely on visual cues for smooth and secure landings on various surfaces. In the process of carrying out tasks, micro unmanned aerial vehicles (UAVs) may encounter various emergencies, and it is necessary to land safely in complex and unpredictable ground environments, especially when altitude information is not accurately obtained, which undoubtedly poses a significant challenge. Our study draws on the remarkable response mechanism of the Lobula Giant Movement Detector to looming scenarios to develop a novel UAV landing strategy. The proposed strategy does not require distance estimation, making it particularly suitable for payload-constrained micro aerial vehicles. Through a series of experiments, this strategy has proven to effectively achieve stable and high-performance landings in unknown and complex environments using only a monocular camera. Furthermore, a novel mechanism to trigger the final landing phase has been introduced, further ensuring the safe and stable touchdown of the drone.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad8d99\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad8d99","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A bio-inspired looming detection for stable landing in unmanned aerial vehicles.
Flying insects, such as flies and bees, have evolved the capability to rely solely on visual cues for smooth and secure landings on various surfaces. In the process of carrying out tasks, micro unmanned aerial vehicles (UAVs) may encounter various emergencies, and it is necessary to land safely in complex and unpredictable ground environments, especially when altitude information is not accurately obtained, which undoubtedly poses a significant challenge. Our study draws on the remarkable response mechanism of the Lobula Giant Movement Detector to looming scenarios to develop a novel UAV landing strategy. The proposed strategy does not require distance estimation, making it particularly suitable for payload-constrained micro aerial vehicles. Through a series of experiments, this strategy has proven to effectively achieve stable and high-performance landings in unknown and complex environments using only a monocular camera. Furthermore, a novel mechanism to trigger the final landing phase has been introduced, further ensuring the safe and stable touchdown of the drone.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.