一种扑翼机器人,其仿生折叠机制来源于甲虫的后翼。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xin Li, Yu Zheng, Huan Shen
{"title":"一种扑翼机器人,其仿生折叠机制来源于甲虫的后翼。","authors":"Xin Li, Yu Zheng, Huan Shen","doi":"10.1088/1748-3190/adb2cb","DOIUrl":null,"url":null,"abstract":"<p><p>When the beetle lands on the target, the hind wings fold regularly to form smaller wing packages and are hidden on the ventral side of the elytra due to the interaction between the elytra and abdomen. Its complex folding pattern is attributed to the flexibility of the hind wings, the super-elasticity of the folding joints, and the special geometric morphology of the veins. The corrugation and folding pattern of the hind wings can provide new insights for the design of folding anti-collision mechanisms and the improvement of aerodynamic performance of ornithopter. This paper first proposes a beetle-type ornithopter with foldable wings based on the folding mechanism and kinematic characteristics of the beetle's hind wings. Subsequently, a series of numerical simulations were conducted on flapping wing robot to explore its flapping kinematics, folding stability, structural stiffness. Finally, the force generation of flapping wings was tested on the fabricated prototype.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wing-flapping robot with a bio-inspired folding mechanism derived from the beetle's hind wing.\",\"authors\":\"Xin Li, Yu Zheng, Huan Shen\",\"doi\":\"10.1088/1748-3190/adb2cb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When the beetle lands on the target, the hind wings fold regularly to form smaller wing packages and are hidden on the ventral side of the elytra due to the interaction between the elytra and abdomen. Its complex folding pattern is attributed to the flexibility of the hind wings, the super-elasticity of the folding joints, and the special geometric morphology of the veins. The corrugation and folding pattern of the hind wings can provide new insights for the design of folding anti-collision mechanisms and the improvement of aerodynamic performance of ornithopter. This paper first proposes a beetle-type ornithopter with foldable wings based on the folding mechanism and kinematic characteristics of the beetle's hind wings. Subsequently, a series of numerical simulations were conducted on flapping wing robot to explore its flapping kinematics, folding stability, structural stiffness. Finally, the force generation of flapping wings was tested on the fabricated prototype.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/adb2cb\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adb2cb","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当甲虫降落在目标上时,后翅有规律地折叠形成较小的翼包,由于鞘翅和腹部的相互作用,隐藏在鞘翅的腹侧。其复杂的折叠模式归因于后翼的柔韧性,折叠关节的超弹性以及静脉的特殊几何形态。后翼的波纹和折叠模式可以为扑翼机折叠防撞机构的设计和气动性能的提高提供新的思路。本文首先根据甲虫后翅的折叠机理和运动特性,提出了一种甲虫型可折叠翼扑翼机。随后,对扑翼机器人进行了一系列的数值模拟,对扑翼机器人的扑动运动学、折叠稳定性、结构刚度进行了研究。最后,在制造的样机上进行了扑翼生力测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wing-flapping robot with a bio-inspired folding mechanism derived from the beetle's hind wing.

When the beetle lands on the target, the hind wings fold regularly to form smaller wing packages and are hidden on the ventral side of the elytra due to the interaction between the elytra and abdomen. Its complex folding pattern is attributed to the flexibility of the hind wings, the super-elasticity of the folding joints, and the special geometric morphology of the veins. The corrugation and folding pattern of the hind wings can provide new insights for the design of folding anti-collision mechanisms and the improvement of aerodynamic performance of ornithopter. This paper first proposes a beetle-type ornithopter with foldable wings based on the folding mechanism and kinematic characteristics of the beetle's hind wings. Subsequently, a series of numerical simulations were conducted on flapping wing robot to explore its flapping kinematics, folding stability, structural stiffness. Finally, the force generation of flapping wings was tested on the fabricated prototype.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信