Shane A Riddle, Clayton B Jackson, Kathryn A Daltorio, Roger D Quinn
{"title":"三维模型预测软体蜗杆机器人蠕动运动的行为。","authors":"Shane A Riddle, Clayton B Jackson, Kathryn A Daltorio, Roger D Quinn","doi":"10.1088/1748-3190/ae0631","DOIUrl":null,"url":null,"abstract":"<p><p>The passive compliance of a soft worm-like body can be a key advantage for traversal of complex confined spaces, but in practice, the body's stiffness and contact friction often require experimental adjustments. Here, for the first time, we develop a dynamic, 3D simulation that enables systematic testing of robot parameters (e.g. stiffness and friction) in different radius of curvature environments, which will help us better understand design trade-offs in creating soft robots that mimic worm-like locomotion. Specifically, we use the open-source physics engine MuJoCo because it is established for both biomechanical and robotic modeling, as well as multi-point contact dynamics, which are present in confined spaces. The model has sensory capabilities analogous to the stretch and tactile proprioception of an earthworm and is amenable to both feedforward and feedback control. After validating our model by comparing to our previous physical robot, we quantify locomotion performance over a range of friction coefficients, structural stiffnesses, and turning radii. We found that speed increased with friction coefficient on flat ground for higher stiffness models, but decreased with friction coefficient for lower stiffness models, both on flat ground and in pipe bends. For turning radii greater than 0.45 m, speed and stiffness also had a positive correlation, however, below the critical turning radius of 0.45 m, increasing stiffness had no appreciable influence on speed. This simulation can potentially be used to optimize designs for particular environments, to better understand the influence of passive vs. active control on individual and coupled segments, and perhaps offer a deeper understanding of how animals and robots can employ soft structures. For example, we can posit from our results that changing stiffness will not increase speed below the critical turning radius, meaning further experiments should focus on other parameters or actively controlled turning to improve speed through tighter turns.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D model predicts behavior of a soft bodied worm robot performing peristaltic locomotion.\",\"authors\":\"Shane A Riddle, Clayton B Jackson, Kathryn A Daltorio, Roger D Quinn\",\"doi\":\"10.1088/1748-3190/ae0631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The passive compliance of a soft worm-like body can be a key advantage for traversal of complex confined spaces, but in practice, the body's stiffness and contact friction often require experimental adjustments. Here, for the first time, we develop a dynamic, 3D simulation that enables systematic testing of robot parameters (e.g. stiffness and friction) in different radius of curvature environments, which will help us better understand design trade-offs in creating soft robots that mimic worm-like locomotion. Specifically, we use the open-source physics engine MuJoCo because it is established for both biomechanical and robotic modeling, as well as multi-point contact dynamics, which are present in confined spaces. The model has sensory capabilities analogous to the stretch and tactile proprioception of an earthworm and is amenable to both feedforward and feedback control. After validating our model by comparing to our previous physical robot, we quantify locomotion performance over a range of friction coefficients, structural stiffnesses, and turning radii. We found that speed increased with friction coefficient on flat ground for higher stiffness models, but decreased with friction coefficient for lower stiffness models, both on flat ground and in pipe bends. For turning radii greater than 0.45 m, speed and stiffness also had a positive correlation, however, below the critical turning radius of 0.45 m, increasing stiffness had no appreciable influence on speed. This simulation can potentially be used to optimize designs for particular environments, to better understand the influence of passive vs. active control on individual and coupled segments, and perhaps offer a deeper understanding of how animals and robots can employ soft structures. For example, we can posit from our results that changing stiffness will not increase speed below the critical turning radius, meaning further experiments should focus on other parameters or actively controlled turning to improve speed through tighter turns.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ae0631\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ae0631","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A 3D model predicts behavior of a soft bodied worm robot performing peristaltic locomotion.
The passive compliance of a soft worm-like body can be a key advantage for traversal of complex confined spaces, but in practice, the body's stiffness and contact friction often require experimental adjustments. Here, for the first time, we develop a dynamic, 3D simulation that enables systematic testing of robot parameters (e.g. stiffness and friction) in different radius of curvature environments, which will help us better understand design trade-offs in creating soft robots that mimic worm-like locomotion. Specifically, we use the open-source physics engine MuJoCo because it is established for both biomechanical and robotic modeling, as well as multi-point contact dynamics, which are present in confined spaces. The model has sensory capabilities analogous to the stretch and tactile proprioception of an earthworm and is amenable to both feedforward and feedback control. After validating our model by comparing to our previous physical robot, we quantify locomotion performance over a range of friction coefficients, structural stiffnesses, and turning radii. We found that speed increased with friction coefficient on flat ground for higher stiffness models, but decreased with friction coefficient for lower stiffness models, both on flat ground and in pipe bends. For turning radii greater than 0.45 m, speed and stiffness also had a positive correlation, however, below the critical turning radius of 0.45 m, increasing stiffness had no appreciable influence on speed. This simulation can potentially be used to optimize designs for particular environments, to better understand the influence of passive vs. active control on individual and coupled segments, and perhaps offer a deeper understanding of how animals and robots can employ soft structures. For example, we can posit from our results that changing stiffness will not increase speed below the critical turning radius, meaning further experiments should focus on other parameters or actively controlled turning to improve speed through tighter turns.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.