{"title":"昆虫扑翼装置的机械共振条件:从小型小黄蜂的飞行和游泳的观察。","authors":"Artyom Falman, Vladislav Dvornikov, Sergey Farisenkov, Nadezhda Lapina, Alexey Polilov, Dmitry Kolomenskiy","doi":"10.1088/1748-3190/ae0aa5","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence suggests that insects may utilize resonant mechanics during flight to optimize energetic efficiency, though whether this mechanism is universal across all insect species remains debated. Microinsects appear particularly intriguing in this context: they exhibit agility comparable to larger species despite experiencing higher aerodynamic damping forces on their wings. We investigated mechanical resonance dynamics focusing on the miniature wasp<i>Tiphodytes gerriphagus</i>-a remarkable species capable of both aerial flight and underwater locomotion, using wings in both cases. This dual-mode mobility introduces additional biomechanical constraints that simplify parameter identification in the analysis. We developed a reduced-order model incorporating muscle activation, internal inertial and viscous damping forces, thoracic elasticity, and inertial and fluid-dynamic forces acting on the wing. This model represents the insect flight apparatus as a one-dimensional oscillator. It employs capillary analogy modeling, integrated with a wing-thorax-muscle system undergoing periodic flapping motions. Our results demonstrate limited flight motor resonance potential in air, caused by strong damping effects, and unavoidably overdamped conditions underwater.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical resonance conditions in insect flapping wing apparatus: insights from flight and swimming of a miniature wasp<i>Tiphodytes gerriphagus</i>.\",\"authors\":\"Artyom Falman, Vladislav Dvornikov, Sergey Farisenkov, Nadezhda Lapina, Alexey Polilov, Dmitry Kolomenskiy\",\"doi\":\"10.1088/1748-3190/ae0aa5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evidence suggests that insects may utilize resonant mechanics during flight to optimize energetic efficiency, though whether this mechanism is universal across all insect species remains debated. Microinsects appear particularly intriguing in this context: they exhibit agility comparable to larger species despite experiencing higher aerodynamic damping forces on their wings. We investigated mechanical resonance dynamics focusing on the miniature wasp<i>Tiphodytes gerriphagus</i>-a remarkable species capable of both aerial flight and underwater locomotion, using wings in both cases. This dual-mode mobility introduces additional biomechanical constraints that simplify parameter identification in the analysis. We developed a reduced-order model incorporating muscle activation, internal inertial and viscous damping forces, thoracic elasticity, and inertial and fluid-dynamic forces acting on the wing. This model represents the insect flight apparatus as a one-dimensional oscillator. It employs capillary analogy modeling, integrated with a wing-thorax-muscle system undergoing periodic flapping motions. Our results demonstrate limited flight motor resonance potential in air, caused by strong damping effects, and unavoidably overdamped conditions underwater.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ae0aa5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ae0aa5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical resonance conditions in insect flapping wing apparatus: insights from flight and swimming of a miniature waspTiphodytes gerriphagus.
Evidence suggests that insects may utilize resonant mechanics during flight to optimize energetic efficiency, though whether this mechanism is universal across all insect species remains debated. Microinsects appear particularly intriguing in this context: they exhibit agility comparable to larger species despite experiencing higher aerodynamic damping forces on their wings. We investigated mechanical resonance dynamics focusing on the miniature waspTiphodytes gerriphagus-a remarkable species capable of both aerial flight and underwater locomotion, using wings in both cases. This dual-mode mobility introduces additional biomechanical constraints that simplify parameter identification in the analysis. We developed a reduced-order model incorporating muscle activation, internal inertial and viscous damping forces, thoracic elasticity, and inertial and fluid-dynamic forces acting on the wing. This model represents the insect flight apparatus as a one-dimensional oscillator. It employs capillary analogy modeling, integrated with a wing-thorax-muscle system undergoing periodic flapping motions. Our results demonstrate limited flight motor resonance potential in air, caused by strong damping effects, and unavoidably overdamped conditions underwater.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.