Utaka Kagawa, Jun Hoshina, Yosuke Yamamoto, Hao Liu, Toshiyuki Nakata
{"title":"受鸟类启发的柔性尾翼改善了固定翼空中机器人的空气动力学性能。","authors":"Utaka Kagawa, Jun Hoshina, Yosuke Yamamoto, Hao Liu, Toshiyuki Nakata","doi":"10.1088/1748-3190/adf78e","DOIUrl":null,"url":null,"abstract":"<p><p>The tail of a bird-or a bird-inspired aerial robot-is an aerodynamically effective structure that enhances efficiency, stability, and manoeuvrability through attitude control and morphing. Optimising the morphology and structure of the tail can further improve the flight performance of such flyers. Inspired by previous studies on bird tails, we designed and developed a flexible tail capable of deforming in a bird-like manner. We investigated the effect of tail flexibility on the flight performance of a bird-inspired aerial robot through wind tunnel experiments and computational fluid dynamic analyses. Our results demonstrate that passive morphing of a tail with appropriate flexibility can adjust the tail surface orientation to direct aerodynamic force forward via pressure at the leading edge, thereby improving the lift-to-drag ratio and overall flight efficiency of the aerial robot. The proposed design also enables tail weight reduction, contributing to improved stability and manoeuvrability. These findings highlight tail flexibility as a key design parameter for improving the performance of bird-inspired aerial robots.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bird-inspired flexible tail improves aerodynamic performance of fixed-wing aerial robots.\",\"authors\":\"Utaka Kagawa, Jun Hoshina, Yosuke Yamamoto, Hao Liu, Toshiyuki Nakata\",\"doi\":\"10.1088/1748-3190/adf78e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The tail of a bird-or a bird-inspired aerial robot-is an aerodynamically effective structure that enhances efficiency, stability, and manoeuvrability through attitude control and morphing. Optimising the morphology and structure of the tail can further improve the flight performance of such flyers. Inspired by previous studies on bird tails, we designed and developed a flexible tail capable of deforming in a bird-like manner. We investigated the effect of tail flexibility on the flight performance of a bird-inspired aerial robot through wind tunnel experiments and computational fluid dynamic analyses. Our results demonstrate that passive morphing of a tail with appropriate flexibility can adjust the tail surface orientation to direct aerodynamic force forward via pressure at the leading edge, thereby improving the lift-to-drag ratio and overall flight efficiency of the aerial robot. The proposed design also enables tail weight reduction, contributing to improved stability and manoeuvrability. These findings highlight tail flexibility as a key design parameter for improving the performance of bird-inspired aerial robots.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\"20 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/adf78e\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adf78e","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Bird-inspired flexible tail improves aerodynamic performance of fixed-wing aerial robots.
The tail of a bird-or a bird-inspired aerial robot-is an aerodynamically effective structure that enhances efficiency, stability, and manoeuvrability through attitude control and morphing. Optimising the morphology and structure of the tail can further improve the flight performance of such flyers. Inspired by previous studies on bird tails, we designed and developed a flexible tail capable of deforming in a bird-like manner. We investigated the effect of tail flexibility on the flight performance of a bird-inspired aerial robot through wind tunnel experiments and computational fluid dynamic analyses. Our results demonstrate that passive morphing of a tail with appropriate flexibility can adjust the tail surface orientation to direct aerodynamic force forward via pressure at the leading edge, thereby improving the lift-to-drag ratio and overall flight efficiency of the aerial robot. The proposed design also enables tail weight reduction, contributing to improved stability and manoeuvrability. These findings highlight tail flexibility as a key design parameter for improving the performance of bird-inspired aerial robots.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.