Design and realization of a low-drive bionic frog robot.

IF 3 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yichen Chu, Yahui Wang, Mingzheng Bao, Tiancheng Hao, Zhifeng Lv, Xiaohao Li, Tianbiao Yu, Ji Zhao
{"title":"Design and realization of a low-drive bionic frog robot.","authors":"Yichen Chu, Yahui Wang, Mingzheng Bao, Tiancheng Hao, Zhifeng Lv, Xiaohao Li, Tianbiao Yu, Ji Zhao","doi":"10.1088/1748-3190/adf6f7","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the design and fabrication of a compact underdriven bionic frog robot, which is inspired by the locomotion stance of a frog. The robot's hind legs were ingeniously built using an underdriven associative 8-bar linkage mechanism with a single motor drive to mimic the swimming motion of a frog. To enhance the robot's biomechanics and locomotor capabilities, the robot's shell was designed to mimic biological features and adjust buoyancy. In addition, the body of the robot has three sealed chambers, which include a module for adjusting its center of gravity, an energy module, and a control and communication module. The robot is equipped with an integrated E30-170T27D transceiver chip specifically designed for wireless communication in shallow water. The Tensilica Xtensa LX6 microprocessor can perform sensor data acquisition and control robotic movements. Prototype experiments demonstrated that the frog robot is capable of achieving stable autonomous swimming and three-dimensional longitudinal movement. This is made possible by using two independently driven hind legs and a center-of-gravity adjustment mechanism. The robot exhibits an average speed of 100 mm s<sup>-1</sup>. Furthermore, owing to its low drive, high bionic, and small design, the robot minimized perturbations to the water environment during underwater movement. This allows a stable water environment for underwater measurements and improves the overall endurance time. This study improves the overall endurance and provides a theoretical basis for the design of underdrive mechanisms for future bionic underwater robots.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adf6f7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design and fabrication of a compact underdriven bionic frog robot, which is inspired by the locomotion stance of a frog. The robot's hind legs were ingeniously built using an underdriven associative 8-bar linkage mechanism with a single motor drive to mimic the swimming motion of a frog. To enhance the robot's biomechanics and locomotor capabilities, the robot's shell was designed to mimic biological features and adjust buoyancy. In addition, the body of the robot has three sealed chambers, which include a module for adjusting its center of gravity, an energy module, and a control and communication module. The robot is equipped with an integrated E30-170T27D transceiver chip specifically designed for wireless communication in shallow water. The Tensilica Xtensa LX6 microprocessor can perform sensor data acquisition and control robotic movements. Prototype experiments demonstrated that the frog robot is capable of achieving stable autonomous swimming and three-dimensional longitudinal movement. This is made possible by using two independently driven hind legs and a center-of-gravity adjustment mechanism. The robot exhibits an average speed of 100 mm s-1. Furthermore, owing to its low drive, high bionic, and small design, the robot minimized perturbations to the water environment during underwater movement. This allows a stable water environment for underwater measurements and improves the overall endurance time. This study improves the overall endurance and provides a theoretical basis for the design of underdrive mechanisms for future bionic underwater robots.

低驱动仿生青蛙机器人的设计与实现。
本文以青蛙的运动姿态为灵感,设计和制造了一种紧凑的欠驱动仿生青蛙机器人。机器人的后腿巧妙地采用了一个低驱动的8杆组合机构和一个单一的马达驱动来模仿青蛙的游泳活动。为了增强机器人的生物识别和运动能力,机器人的外壳被设计成模拟和调整浮力。此外,机器人的身体有三个密封室,其中包括一个调整其重心的模块,一个能量模块,一个控制和通信模块。该机器人配备了集成的E30-170T27D收发芯片,该芯片专为浅水无线通信而设计。Tensilica Xtensa LX6微处理器可以执行传感器数据采集和控制机器人运动。样机实验表明,青蛙机器人能够实现稳定的自主游泳和三维纵向运动。这是通过使用两条独立驱动的后腿和一个重心调整机构实现的。机器人的平均速度为100毫米/秒。此外,由于其低驱动、高仿生学和小设计,机器人在水下运动时对水环境的扰动最小。这为水下测量提供了稳定的水环境,并提高了整体续航时间。该研究提高了整体续航能力,为未来仿生水下机器人的下驱动机构设计提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信