Pitch dynamics and aerodynamic interactions in damselfly-Inspired micro air vehicles: the role of the position of the center-of-mass.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yu-Hsiang Lai, Sheng-Kai Chang, Kuan-Yu Chen, Yu-Jia Liou, Yu-Cheng Liu
{"title":"Pitch dynamics and aerodynamic interactions in damselfly-Inspired micro air vehicles: the role of the position of the center-of-mass.","authors":"Yu-Hsiang Lai, Sheng-Kai Chang, Kuan-Yu Chen, Yu-Jia Liou, Yu-Cheng Liu","doi":"10.1088/1748-3190/adeb26","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the influence of center-of-mass (CoM) positioning on the pitch dynamics of damselfly-inspired flapping-wing micro aerial vehicles. We develop a simulation framework that integrates computational fluid dynamics, rigid-body dynamics, and self-propulsion model. Using experimentally measured and fixed wing kinematics, we systematically examine how different CoM positions affect pitch attitude, aerodynamic moments, and flight velocity. The results reveal that variations in CoM position significantly influence body pitch motion, which in turn alters local flow conditions, vortex formation, and moment arm interactions. These changes give rise to a passive pitching mechanism that regulates pitch oscillations and prevents divergence over short timescales. This bounded behavior suggests that insects may achieve transient flight stability through passive aerodynamic-inertial coupling, even in the absence of active control. Additionally, a rearward CoM suppresses downward pitch motion and promotes ascent, while a forward CoM increases forward velocity but limits ascent capability. The findings demonstrate that transient stabilization and flight modulation can be achieved solely through mass distribution, offering a low-complexity design strategy for bio-inspired MAVs.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adeb26","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the influence of center-of-mass (CoM) positioning on the pitch dynamics of damselfly-inspired flapping-wing micro aerial vehicles. We develop a simulation framework that integrates computational fluid dynamics, rigid-body dynamics, and self-propulsion model. Using experimentally measured and fixed wing kinematics, we systematically examine how different CoM positions affect pitch attitude, aerodynamic moments, and flight velocity. The results reveal that variations in CoM position significantly influence body pitch motion, which in turn alters local flow conditions, vortex formation, and moment arm interactions. These changes give rise to a passive pitching mechanism that regulates pitch oscillations and prevents divergence over short timescales. This bounded behavior suggests that insects may achieve transient flight stability through passive aerodynamic-inertial coupling, even in the absence of active control. Additionally, a rearward CoM suppresses downward pitch motion and promotes ascent, while a forward CoM increases forward velocity but limits ascent capability. The findings demonstrate that transient stabilization and flight modulation can be achieved solely through mass distribution, offering a low-complexity design strategy for bio-inspired MAVs.

微飞行器的俯仰动力学和气动相互作用:质心位置的作用。
研究了质心定位对阻尼式扑翼微型飞行器俯仰动力学的影响。我们开发了一个集成了计算流体动力学(CFD)、刚体动力学和自推进模型的仿真框架。使用实验测量和固定翼运动学,我们系统地研究了不同的CoM位置如何影响俯仰姿态,气动力矩和飞行速度。结果表明,CoM位置的变化显著影响体俯仰运动,进而改变局部流动条件、涡形成和力臂相互作用。这些变化产生了被动俯仰机制,该机制调节俯仰振荡并防止在短时间尺度上出现分歧。这种有界行为表明,即使在没有主动控制的情况下,昆虫也可能通过被动空气动力-惯性耦合实现短暂的飞行稳定性。此外,后向重心抑制俯仰向下运动并促进爬升,而前向重心增加前向速度但限制爬升能力。研究结果表明,瞬态稳定和飞行调制可以仅通过质量分布来实现,为仿生无人机提供了一种低复杂度的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信