Bioinspiration & Biomimetics最新文献

筛选
英文 中文
Hypostomus plecostomus-inspired soft sucker to adsorb slippery tissues: a stabilizing post-valvular cavity and stiffness gradient materials provide excellent adsorption performance. 由褶皱吸盘(Hypostomus plecostomus)启发的软吸盘可吸附滑溜组织:稳定的瓣膜后腔和硬度梯度材料提供了出色的吸附性能。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-27 DOI: 10.1088/1748-3190/ad6f88
Peng Xiao, Ziwei Wang, Kangpeng Zhou, Xinwei Fan, Yuhan Zhang, Guangkai Sun, Zhu Lianqing
{"title":"Hypostomus plecostomus-inspired soft sucker to adsorb slippery tissues: a stabilizing post-valvular cavity and stiffness gradient materials provide excellent adsorption performance.","authors":"Peng Xiao, Ziwei Wang, Kangpeng Zhou, Xinwei Fan, Yuhan Zhang, Guangkai Sun, Zhu Lianqing","doi":"10.1088/1748-3190/ad6f88","DOIUrl":"10.1088/1748-3190/ad6f88","url":null,"abstract":"<p><p>The hard suckers commonly used in surgical operations often cause adsorption extrusion damage to the biological tissue. To tackle this problem, from the perspective of bionics, through in-depth observation and research on the special sucker adsorption process and adsorption mechanism of hypostomus plecostomus (HP), this paper proposes a bionic soft hypostomus plecostomus sucker (BSHPS) with a variable stiffness gradient structure with a good adsorption performance on soft moist irregular biological tissues. The BSHPS comprises a lip disc, a pre-valvular cavity, and a post-valvular cavity. Through the volume changes of the pre- and post-valvular cavities, a pressure difference is generated between the inside and outside of the sucker, enabling the lip disc to remain sealed. The experiments were carried out by an automatic tensile force measurement system equipped with a vacuum pump, and the results showed that in slippery environment, the adsorption performance of the BSHPS is improved by a maximum of 61.9% compared to that in dry environment. On a biological tissue surface, the adsorption force is as high as 13.7765 N. The most important advantage of the proposed BSHPS is that it can be firmly adsorbed the surface of soft moist irregular biological tissues, effectively slowing down or avoiding adsorption extrusion damage to the biological tissue. Therefore, the BSHPS is expected to have good application prospects in modern surgical medicine.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrodynamic pressure sensing for a biomimetic robotic fish caudal fin integrated with a resistive pressure sensor. 集成了电阻式压力传感器的生物仿真机器人鱼尾鳍的水动力压力传感。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-22 DOI: 10.1088/1748-3190/ad6d21
Quanliang Zhao, Chao Zhang, Jinghao Chen, Mengying Zhang, Junjie Yuan, Lei Zhao, Jie Zhang, Can Huang, Guangping He
{"title":"Hydrodynamic pressure sensing for a biomimetic robotic fish caudal fin integrated with a resistive pressure sensor.","authors":"Quanliang Zhao, Chao Zhang, Jinghao Chen, Mengying Zhang, Junjie Yuan, Lei Zhao, Jie Zhang, Can Huang, Guangping He","doi":"10.1088/1748-3190/ad6d21","DOIUrl":"10.1088/1748-3190/ad6d21","url":null,"abstract":"<p><p>Micro-sensors, such as pressure and flow sensors, are usually adopted to attain actual fluid information around swimming biomimetic robotic fish for hydrodynamic analysis and control. However, most of the reported micro-sensors are mounted discretely on body surfaces of robotic fish and it is impossible to analyzed the hydrodynamics between the caudal fin and the fluid. In this work, a biomimetic caudal fin integrated with a resistive pressure sensor is designed and fabricated by laser machined conductive carbon fibre composites. To analyze the pressure exerted on the caudal fin during underwater oscillation, the pressure on the caudal fin is measured under different oscillating frequencies and angles. Then a model developed from Bernoulli equation indicates that the maximum pressure difference is linear to the quadratic power of the oscillating frequency and the maximum oscillating angle. The fluid disturbance generated by caudal fin oscillating increases with an increase of oscillating frequency, resulting in the decrease of the efficiency of converting the kinetic energy of the caudal fin oscillation into the pressure difference on both sides of the caudal fin. However, perhaps due to the longer stability time of the disturbed fluid, this conversion efficiency increases with the increase of the maximum oscillating angle. Additionally, the pressure variation of the caudal fin oscillating with continuous different oscillating angles is also demonstrated to be detected effectively. It is suggested that the caudal fin integrated with the pressure sensor could be used for sensing the<i>in situ</i>flow field in real time and analyzing the hydrodynamics of biomimetic robotic fish.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotic flytrap with an ultra-sensitive 'trichome' and fast-response 'lobes'. 带有超灵敏 "毛状体 "和快速反应 "叶片 "的机器人捕蝇器。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-14 DOI: 10.1088/1748-3190/ad6abf
Yongkang Jiang, Yingtian Li, Xin Tong, Zhipeng Wang, Yanmin Zhou, Bin He
{"title":"Robotic flytrap with an ultra-sensitive 'trichome' and fast-response 'lobes'.","authors":"Yongkang Jiang, Yingtian Li, Xin Tong, Zhipeng Wang, Yanmin Zhou, Bin He","doi":"10.1088/1748-3190/ad6abf","DOIUrl":"10.1088/1748-3190/ad6abf","url":null,"abstract":"<p><p>Nature abounds with examples of ultra-sensitive perception and agile body transformation for highly efficient predation as well as extraordinary adaptation to complex environments. Flytraps, as a representative example, could effectively detect the most minute physical stimulation of insects and respond instantly, inspiring numerous robotic designs and applications. However, current robotic flytraps face challenges in reproducing the ultra-sensitive insect-touch perception. In addition, fast and fully-covered capture of live insects with robotic flytraps remains elusive. Here we report a novel design of a robotic flytrap with an ultra-sensitive 'trichome' and bistable fast-response 'lobes'. Our results show that the 'trichome' of the proposed robotic flytrap could detect and respond to both the external stimulation of 0.45 mN and a tiny touch of a flying bee with a weight of 0.12 g. Besides, once the 'trichome' is triggered, the bistable 'lobes' could instantly close themselves in 0.2 s to form a fully-covered cage to trap the bees, and reopen to set them free after the tests. We introduce the design, modeling, optimization, and verification of the robotic flytrap, and envision broader applications of this technology in ultra-sensitive perception, fast-response grasping, and biomedical engineering studies.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal optimal design in the vertebrate limb pattern and lessons for bioinspired design. 脊椎动物肢体模式的通用优化设计和生物启发设计的启示。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-09 DOI: 10.1088/1748-3190/ad66a3
Stuart Burgess
{"title":"Universal optimal design in the vertebrate limb pattern and lessons for bioinspired design.","authors":"Stuart Burgess","doi":"10.1088/1748-3190/ad66a3","DOIUrl":"10.1088/1748-3190/ad66a3","url":null,"abstract":"<p><p>This paper broadly summarizes the variation of design features found in vertebrate limbs and analyses the resultant versatility and multifunctionality in order to make recommendations for bioinspired robotics. The vertebrate limb pattern (e.g. shoulder, elbow, wrist and digits) has been proven to be very successful in many different applications in the animal kingdom. However, the actual level of optimality of the limb for each animal application is not clear because for some cases (e.g. whale flippers and bird wings), the basic skeletal layout is assumed to be highly constrained by evolutionary ancestry. This paper addresses this important and fundamental question of optimality by analysing six limbs with contrasting functions: human arm, whale flipper, bird wing, human leg, feline hindlimb and frog hindlimb. A central finding of this study is that the vertebrate limb pattern is highly versatile and optimal not just for arms and legs but also for flippers and wings. One key design feature of the vertebrate limb pattern is that of networks of segmented bones that enable smooth morphing of shapes as well as multifunctioning structures. Another key design feature is that of linkage mechanisms that fine-tune motions and mechanical advantage. A total of 52 biomechanical design features of the vertebrate limb are identified and tabulated for these applications. These tables can be a helpful reference for designers of bioinspired robotic and prosthetic limbs. The vertebrate limb has significant potential for the bioinspired design of robotic and prosthetic limbs, especially because of progress in the development of soft actuators.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transfer learning may explain pigeons' ability to detect cancer in histopathology. 迁移学习可以解释鸽子在组织病理学中检测癌症的能力。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-08 DOI: 10.1088/1748-3190/ad6825
Oz Kilim, János Báskay, András Biricz, Zsolt Bedőházi, Péter Pollner, István Csabai
{"title":"Transfer learning may explain pigeons' ability to detect cancer in histopathology.","authors":"Oz Kilim, János Báskay, András Biricz, Zsolt Bedőházi, Péter Pollner, István Csabai","doi":"10.1088/1748-3190/ad6825","DOIUrl":"10.1088/1748-3190/ad6825","url":null,"abstract":"<p><p>Pigeons' unexpected competence in learning to categorize unseen histopathological images has remained an unexplained discovery for almost a decade (Levenson<i>et al</i>2015<i>PLoS One</i><b>10</b>e0141357). Could it be that knowledge transferred from their bird's-eye views of the earth's surface gleaned during flight contributes to this ability? Employing a simulation-based verification strategy, we recapitulate this biological phenomenon with a machine-learning analog. We model pigeons' visual experience during flight with the self-supervised pre-training of a deep neural network on BirdsEyeViewNet; our large-scale aerial imagery dataset. As an analog of the differential food reinforcement performed in Levenson<i>et al</i>'s study 2015<i>PLoS One</i><b>10</b>e0141357), we apply transfer learning from this pre-trained model to the same Hematoxylin and Eosin (H&E) histopathology and radiology images and tasks that the pigeons were trained and tested on. The study demonstrates that pre-training neural networks with bird's-eye view data results in close agreement with pigeons' performance. These results support transfer learning as a reasonable computational model of pigeon representation learning. This is further validated with six large-scale downstream classification tasks using H&E stained whole slide image datasets representing diverse cancer types.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insect tracheal systems as inspiration for carbon dioxide capture systems. 昆虫气管系统为二氧化碳捕获系统提供灵感。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-07 DOI: 10.1088/1748-3190/ad665c
Mitchell H Neal, Jon Harrison, Brent B Skabelund, Ryan J Milcarek
{"title":"Insect tracheal systems as inspiration for carbon dioxide capture systems.","authors":"Mitchell H Neal, Jon Harrison, Brent B Skabelund, Ryan J Milcarek","doi":"10.1088/1748-3190/ad665c","DOIUrl":"10.1088/1748-3190/ad665c","url":null,"abstract":"<p><p>Membrane technology advancements within the past twenty years have provided a new perspective on environmentalism as engineers design membranes to separate greenhouse gases from the environment. Several scientific journals have published articles of experimental evidence quantifying carbon dioxide (CO<sub>2</sub>), a common greenhouse gas, separation using membrane technology and ranking them against one another. On the other hand, natural systems such as the respiratory system of mammals also accomplish transmembrane transport of CO<sub>2</sub>. However, to our knowledge, a comparison of these natural organic systems with engineered membranes has not yet been accomplished. The tracheal respiratory systems of insects transport CO<sub>2</sub>at the highest rates in the animal kingdom. Therefore, this work compares engineered membranes to the tracheal systems of insects by quantitatively comparing greenhouse gas conductance rates. We demonstrate that on a per unit volume basis, locusts can transport CO<sub>2</sub>approximately ∼100 times more effectively than the best current engineered systems. Given the same temperature conditions, insect tracheal systems transport CO<sub>2</sub>three orders of magnitude faster on average. Miniaturization of CO<sub>2</sub>capture systems based on insect tracheal system design has great potential for reducing cost and improving the capacities of industrial CO<sub>2</sub>capture.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning obstacle avoidance and predation in complex reef environments with deep reinforcement learning. 利用深度强化学习在复杂的珊瑚礁环境中学习避障和捕食。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-07 DOI: 10.1088/1748-3190/ad6544
Ji Hou, Changling He, Tao Li, Chunze Zhang, Qin Zhou
{"title":"Learning obstacle avoidance and predation in complex reef environments with deep reinforcement learning.","authors":"Ji Hou, Changling He, Tao Li, Chunze Zhang, Qin Zhou","doi":"10.1088/1748-3190/ad6544","DOIUrl":"10.1088/1748-3190/ad6544","url":null,"abstract":"<p><p>The reef ecosystem plays a vital role as a habitat for fish species with limited swimming capabilities, serving not only as a sanctuary and food source but also influencing their behavioral tendencies. Understanding the intricate mechanism through which fish adeptly navigate the moving targets within reef environments within complex water flow, all while evading obstacles and maintaining stable postures, has remained a challenging and prominent subject in the realms of fish behavior, ecology, and biomimetics alike. An integrated simulation framework is used to investigate fish predation problems within intricate environments, combining deep reinforcement learning algorithms (DRL) with high-precision fluid-structure interaction numerical methods-immersed boundary lattice Boltzmann method (lB-LBM). The Soft Actor-Critic (SAC) algorithm is used to improve the intelligent fish's capacity for random exploration, tackling the multi-objective sparse reward challenge inherent in real-world scenarios. Additionally, a reward shaping method tailored to its action purposes has been developed, capable of capturing outcomes and trend characteristics effectively. The convergence and robustness advantages of the method elucidated in this paper are showcased through two case studies: one addressing fish capturing randomly moving targets in hydrostatic flow field, and the other focusing on fish counter-current foraging in reef environments to capture drifting food. A comprehensive analysis was conducted of the influence and significance of various reward types on the decision-making processes of intelligent fish within intricate environments.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of shortfin mako shark skin at the reattachment of a separated turbulent boundary layer. 短吻鲭鲨皮肤对分离的湍流边界层重新连接的影响。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-06 DOI: 10.1088/1748-3190/ad679c
Leonardo M Santos, Amy Lang, Redha Wahidi, Andrew Bonacci, Sashank Gautam, Jacob Parsons
{"title":"The effect of shortfin mako shark skin at the reattachment of a separated turbulent boundary layer.","authors":"Leonardo M Santos, Amy Lang, Redha Wahidi, Andrew Bonacci, Sashank Gautam, Jacob Parsons","doi":"10.1088/1748-3190/ad679c","DOIUrl":"10.1088/1748-3190/ad679c","url":null,"abstract":"<p><p>This smooth flat experimental study investigates the capability of mako shark scales to control flow separation when placed downstream of the onset of turbulent boundary layer separation and within the reattachment region. The objective of the study is to validate the hypothesis that the shark scales' bristling and recoiling would prevent the flow separation on the flank region (the fastest flow region) of the shark. A rotating cylinder was used to induce an adverse pressure gradient over a flat plate to produce a region of separated flow where the shark skin specimen was mounted. Two types of mako shark scales (flank (B2) and between flank and dorsal fin (B1)) were positioned in the preferred flow direction on a flat plate. The B2 scales are slender, 200<i>μ</i>m tall, and can bristle up to 50°. In contrast, B1 scales are wider, shorter, and can bristle at 30°. The bristling angle and shape are the main mechanisms by which the scales act to inhibit flow from moving upstream near the wall. Thus, the difference in the bristling angles and structures of the scales is attributed to the fact that the B2 scales function in a thicker boundary layer (behind the shark's gills) where they must bristle sufficiently high into the boundary layer to control the flow separation, and because the adverse pressure gradient in this region is higher where flow separation is more likely. The scales are placed in the reattachment region to elucidate their ability to control and reattach an already separated turbulent flow. The results show that B2 scales placed in the reattachment region reduce the size of the turbulent separation bubble and decrease the turbulent kinetic energy, while B1 scales have the opposite effect.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visually guided swarm motion coordination via insect-inspired small target motion reactions. 通过昆虫启发的小目标运动反应实现视觉引导的蜂群运动协调。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-06 DOI: 10.1088/1748-3190/ad6726
Md Arif Billah, Imraan A Faruque
{"title":"Visually guided swarm motion coordination via insect-inspired small target motion reactions.","authors":"Md Arif Billah, Imraan A Faruque","doi":"10.1088/1748-3190/ad6726","DOIUrl":"10.1088/1748-3190/ad6726","url":null,"abstract":"<p><p>Despite progress developing experimentally-consistent models of insect in-flight sensing and feedback for individual agents, a lack of systematic understanding of the multi-agent and group performance of the resulting bio-inspired sensing and feedback approaches remains a barrier to robotic swarm implementations. This study introduces the small-target motion reactive (STMR) swarming approach by designing a concise engineering model of the small target motion detector (STMD) neurons found in insect lobula complexes. The STMD neuron model identifies the bearing angle at which peak optic flow magnitude occurs, and this angle is used to design an output feedback switched control system. A theoretical stability analysis provides bi-agent stability and state boundedness in group contexts. The approach is simulated and implemented on ground vehicles for validation and behavioral studies. The results indicate despite having the lowest connectivity of contemporary approaches (each agent instantaneously regards only a single neighbor), STMR achieves collective group motion. STMR group level metric analysis also highlights continuously varying polarization and decreasing heading variance.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a bipedal robot for water running based on a six-linkage mechanism inspired by basilisk lizards. 基于受玄武蜥启发的六连杆机构,设计用于水中奔跑的双足机器人。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-08-05 DOI: 10.1088/1748-3190/ad63ea
Jingfu Zhao, Jiaxu Han, Wenjie Ju, Wenjie Zhang, Zhenmin Hou, Chenya Bian, Rongjie Kang, Jiansheng Dai, Zhibin Song
{"title":"Design of a bipedal robot for water running based on a six-linkage mechanism inspired by basilisk lizards.","authors":"Jingfu Zhao, Jiaxu Han, Wenjie Ju, Wenjie Zhang, Zhenmin Hou, Chenya Bian, Rongjie Kang, Jiansheng Dai, Zhibin Song","doi":"10.1088/1748-3190/ad63ea","DOIUrl":"10.1088/1748-3190/ad63ea","url":null,"abstract":"<p><p>Legged robots have received widespread attention in academia and engineering owing to their excellent terrain adaptability. However, most legged robots can only adapt to high-hardness environments instead of flexible environments. Expanding the motion range of legged robots to water is a promising but challenging work. Inspired by basilisk lizards which can run on water surfaces by feet, this paper proposes a bipedal robot for water running by hydrodynamics instead of buoyancy. According to the motion parameters of the basilisk lizard during water running, a single-degree of freedom bipedal mechanism is proposed to reproduce the motion trajectory of the feet of the basilisk lizard. Scale optimization is conducted by a particle swarm optimization algorithm to determine the geometrical parameters of the mechanism. The effects of motion frequency and foot area on mechanism performance are studied and the optimal solutions are determined by the maximum single-cycle lift impulse through numerical calculations. A bipedal water running robot prototype was fabricated, and the experimental results show that the prototype can generate enough support for the robot running on the water by providing a maximum lift of 2.4 times its weight (160 g) and reaching a horizontal forward speed range of 0.3-0.8 m s<sup>-1</sup>, compared with the basilisk lizard weighs 2-200 g, generates a lift impulse that is 111%-225% of its body weight, and moves at a speed of 1.3 ± 0.1 m s<sup>-1</sup>.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信