Elijah Almanzor, Michael Ishida, Arsen Abdulali, Fumiya Iida
{"title":"人工肌肉骨骼系统中强健运动协调的自组织仿生反射回路。","authors":"Elijah Almanzor, Michael Ishida, Arsen Abdulali, Fumiya Iida","doi":"10.1088/1748-3190/adde08","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial musculoskeletal systems mimic mammalian biomechanics using antagonistic muscles and rigid skeletons. They offer benefits such as adjustable stiffness, back-drivability, and muscle failure tolerance but are difficult to model and control due to redundancies across task, joint, and muscle activation spaces, compounded by complex muscle dynamics and motion-dependent moment arms. Analytical methods require detailed system knowledge and lack scalability, while model-free approaches often rely on manual tuning and rarely exploit motor redundancy. This work introduces a model-free, biologically inspired kinematic controller based on reflex circuits that self-organise via Hebbian learning driven by Spontaneous Motor Activity (SMA). These circuits are then integrated to create a computationally inexpensive task-space controller, requiring minimal training and no analytical modelling. Simulations with six- and twelve-muscle models show that the interaction between reflex circuits, morphology, and gain modulation produces coordinated muscle synergies for human-like target reaching. Unlike previous control methods, it is easily scalable, can automatically handle unknown disturbances, and compensates for inaccessible muscles without re-training or manual intervention while maintaining high control accuracy.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-organising bio-inspired reflex circuits for robust motor coordination in artificial musculoskeletal systems.\",\"authors\":\"Elijah Almanzor, Michael Ishida, Arsen Abdulali, Fumiya Iida\",\"doi\":\"10.1088/1748-3190/adde08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial musculoskeletal systems mimic mammalian biomechanics using antagonistic muscles and rigid skeletons. They offer benefits such as adjustable stiffness, back-drivability, and muscle failure tolerance but are difficult to model and control due to redundancies across task, joint, and muscle activation spaces, compounded by complex muscle dynamics and motion-dependent moment arms. Analytical methods require detailed system knowledge and lack scalability, while model-free approaches often rely on manual tuning and rarely exploit motor redundancy. This work introduces a model-free, biologically inspired kinematic controller based on reflex circuits that self-organise via Hebbian learning driven by Spontaneous Motor Activity (SMA). These circuits are then integrated to create a computationally inexpensive task-space controller, requiring minimal training and no analytical modelling. Simulations with six- and twelve-muscle models show that the interaction between reflex circuits, morphology, and gain modulation produces coordinated muscle synergies for human-like target reaching. Unlike previous control methods, it is easily scalable, can automatically handle unknown disturbances, and compensates for inaccessible muscles without re-training or manual intervention while maintaining high control accuracy.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/adde08\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adde08","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-organising bio-inspired reflex circuits for robust motor coordination in artificial musculoskeletal systems.
Artificial musculoskeletal systems mimic mammalian biomechanics using antagonistic muscles and rigid skeletons. They offer benefits such as adjustable stiffness, back-drivability, and muscle failure tolerance but are difficult to model and control due to redundancies across task, joint, and muscle activation spaces, compounded by complex muscle dynamics and motion-dependent moment arms. Analytical methods require detailed system knowledge and lack scalability, while model-free approaches often rely on manual tuning and rarely exploit motor redundancy. This work introduces a model-free, biologically inspired kinematic controller based on reflex circuits that self-organise via Hebbian learning driven by Spontaneous Motor Activity (SMA). These circuits are then integrated to create a computationally inexpensive task-space controller, requiring minimal training and no analytical modelling. Simulations with six- and twelve-muscle models show that the interaction between reflex circuits, morphology, and gain modulation produces coordinated muscle synergies for human-like target reaching. Unlike previous control methods, it is easily scalable, can automatically handle unknown disturbances, and compensates for inaccessible muscles without re-training or manual intervention while maintaining high control accuracy.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.