{"title":"Bioinspired Drone Rotors for Reduced Aeroacoustic Noise and Improved Efficiency.","authors":"Suryansh Prakhar, Jung-Hee Seo, Rajat Mittal","doi":"10.1088/1748-3190/adde9b","DOIUrl":null,"url":null,"abstract":"<p><p>The application of unmanned aerial vehicles (UAVs) is surging across several industries, paralleled by growing demand for these UAVs. However, the noise emitted by UAVs remains a significant impediment to their widespread use even though in areas such as product delivery, they can be more environmentally friendly than traditional delivery methods. Nature has often been a source of inspiration for devices that are efficient and eco-friendly. In the current study, we leverage the previous work by Seo et al. \\emph{(Bioinsp. Biomimetics, 16 (4):046019, 2021)} on the aeroacoustics of flapping wing flight in mosquitoes and fruit flies to propose and examine a simple strategy for reducing the aeroacoustic noise from drone rotors. In particular, inspired by these insects, we explore how an increase in the planform area of the rotor could be used to reduce the rotation rate and the associated aeroacoustic noise from small-scale rotors. The study employs a sharp-interface immersed boundary solver for the flow simulations and the aeroacoustic sound is predicted by the Ffowcs Williams-Hawkings equation. Simulations indicate that the simple strategy of employing rotors with larger planform areas could lead not just to reduced aeroacoustic noise but improved power economy as well.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adde9b","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of unmanned aerial vehicles (UAVs) is surging across several industries, paralleled by growing demand for these UAVs. However, the noise emitted by UAVs remains a significant impediment to their widespread use even though in areas such as product delivery, they can be more environmentally friendly than traditional delivery methods. Nature has often been a source of inspiration for devices that are efficient and eco-friendly. In the current study, we leverage the previous work by Seo et al. \emph{(Bioinsp. Biomimetics, 16 (4):046019, 2021)} on the aeroacoustics of flapping wing flight in mosquitoes and fruit flies to propose and examine a simple strategy for reducing the aeroacoustic noise from drone rotors. In particular, inspired by these insects, we explore how an increase in the planform area of the rotor could be used to reduce the rotation rate and the associated aeroacoustic noise from small-scale rotors. The study employs a sharp-interface immersed boundary solver for the flow simulations and the aeroacoustic sound is predicted by the Ffowcs Williams-Hawkings equation. Simulations indicate that the simple strategy of employing rotors with larger planform areas could lead not just to reduced aeroacoustic noise but improved power economy as well.
无人驾驶飞行器(uav)的应用正在多个行业激增,与此同时,对这些无人机的需求也在不断增长。然而,无人机发出的噪音仍然是其广泛使用的一个重大障碍,即使在产品交付等领域,它们可以比传统的交付方式更环保。大自然常常是高效环保设备的灵感来源。在目前的研究中,我们利用了Seo等人之前的\emph{工作。基于蚊子和果蝇扑翼飞行的气动声学研究,提出了一种降低无人机旋翼气动噪声的简单策略。生物力学学报,16 (4):046019,2021)}特别是,受这些昆虫的启发,我们探索如何增加转子的平台面积,以减少小型转子的旋转速度和相关的气动噪声。本文采用锐利界面浸入式边界求解器进行流动模拟,并采用Ffowcs williams - hawkins方程对气动声进行了预测。仿真结果表明,采用更大平台面积转子的简单策略不仅可以降低气动噪声,还可以提高动力经济性。
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.