{"title":"Bio-inspired swarm of underwater robots: a review.","authors":"Qiang Zhao, Tengfei Yang, Guoqiang Tang, Yan Yang, Fangyang Dong, Ziyue Xi, Yongjiu Zou, Minyi Xu, Shuai Li, Chen Wang, Guangming Xie","doi":"10.1088/1748-3190/ade215","DOIUrl":null,"url":null,"abstract":"<p><p>With the in-depth integration of research across multiple disciplines, such as biomimetics, robotics, and sensing technology, significant advancements have been made in swarm robotics technology, which has been applied in areas including drone swarms, mobile robot swarms, and underwater robot swarms. However, due to the limitations of underwater communication technologies, underwater robot swarms have lagged behind aerial and ground swarms in their development. This paper primarily explores the applications and advancements of swarm intelligence (SI) in multiple underwater robot swarms. Inspired by the behavior of animal swarms, researchers have translated this concept into the design and control strategies of underwater robot swarms. This approach draws on the self-organization, robustness, and adaptability inherent in collective behaviors, significantly enhancing the performance of underwater robot swarms. This paper provides a comprehensive review of the current research status of bio-inspired swarming of multiple underwater robots, including the design and classification of swarm underwater robots, SI algorithms and their applications in multiple underwater robots, and communication mechanisms for underwater robots. Furthermore, this paper highlights critical technical challenges that need to be addressed in research, along with proposed solutions, and discusses the vast application prospects of bio-inspired underwater swarming in military and civilian fields, providing clear directions for future research.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ade215","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the in-depth integration of research across multiple disciplines, such as biomimetics, robotics, and sensing technology, significant advancements have been made in swarm robotics technology, which has been applied in areas including drone swarms, mobile robot swarms, and underwater robot swarms. However, due to the limitations of underwater communication technologies, underwater robot swarms have lagged behind aerial and ground swarms in their development. This paper primarily explores the applications and advancements of swarm intelligence (SI) in multiple underwater robot swarms. Inspired by the behavior of animal swarms, researchers have translated this concept into the design and control strategies of underwater robot swarms. This approach draws on the self-organization, robustness, and adaptability inherent in collective behaviors, significantly enhancing the performance of underwater robot swarms. This paper provides a comprehensive review of the current research status of bio-inspired swarming of multiple underwater robots, including the design and classification of swarm underwater robots, SI algorithms and their applications in multiple underwater robots, and communication mechanisms for underwater robots. Furthermore, this paper highlights critical technical challenges that need to be addressed in research, along with proposed solutions, and discusses the vast application prospects of bio-inspired underwater swarming in military and civilian fields, providing clear directions for future research.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.