Research pathways from tensegrity-related biological structures to tensegrity robots: a bibliometric analysis.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiaobo Zhang, Zhongcai Pei, Zhiyong Tang
{"title":"Research pathways from tensegrity-related biological structures to tensegrity robots: a bibliometric analysis.","authors":"Xiaobo Zhang, Zhongcai Pei, Zhiyong Tang","doi":"10.1088/1748-3190/adedec","DOIUrl":null,"url":null,"abstract":"<p><p>Tensegrity describes a structural principle featuring a self-stabilizing system that consists of continuous tension elements and discontinuous compression elements. This paper undertakes a comprehensive systematic review of the overall development status and defining characteristics of the tensegrity field, employing bibliometric analysis methods and adopting an evolutionary perspective. Based on data spanning a 35 year period on the tensegrity theme sourced from the Web of Science database, we conducted detailed analyses of annual publication trends, significant authors, research areas, journals and co-occurrence maps of author keywords. These analyses collectively provide a nuanced description of the current state of the tensegrity field, as well as two pivotal sub-fields: biotensegrity and tensegrity robots. Through an analysis of research keywords and a timeline of evolving research hotspots within the tensegrity field, we have discerned a continuous evolution in the primary research focuses; from the initial conceptual application of tensegrity in the biological domain, to the subsequent refinement and development of tensegrity theory, and finally to ongoing advancements in tensegrity robots. From an evolutionary perspective, the dynamic transitions of research hotspots in tensegrity studies reflect both the field's progressive maturation and its expansion into emerging research frontiers. In addition, bioinspiration focuses on abstracting principles from nature to inspire novel solutions in other fields or sub-fields. Tensegrity structures exhibit explanatory compatibility with biological architectures. Based on this, the biotensegrity and tensegrity robots each belong to two bioinspiration pathways within the tensegrity framework. Tensegrity robots have emerged as the most prominent research sub-field within the broader conceptual framework of tensegrity, exhibiting a steadily increasing share of publications in the overall tensegrity literature. However, tensegrity robots still face a series of fundamental challenges, including the complexity of dynamic modeling and control, as well as the dilemma in structural optimization. Addressing these issues will likely depend on (1) improved theoretical models of tensegrity systems, (2) specialized tensegrity models tailored to different bio-inspired prototypes, and (3) novel integrations with various control methodologies. These directions are expected to remain key research focuses in the coming years.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adedec","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tensegrity describes a structural principle featuring a self-stabilizing system that consists of continuous tension elements and discontinuous compression elements. This paper undertakes a comprehensive systematic review of the overall development status and defining characteristics of the tensegrity field, employing bibliometric analysis methods and adopting an evolutionary perspective. Based on data spanning a 35 year period on the tensegrity theme sourced from the Web of Science database, we conducted detailed analyses of annual publication trends, significant authors, research areas, journals and co-occurrence maps of author keywords. These analyses collectively provide a nuanced description of the current state of the tensegrity field, as well as two pivotal sub-fields: biotensegrity and tensegrity robots. Through an analysis of research keywords and a timeline of evolving research hotspots within the tensegrity field, we have discerned a continuous evolution in the primary research focuses; from the initial conceptual application of tensegrity in the biological domain, to the subsequent refinement and development of tensegrity theory, and finally to ongoing advancements in tensegrity robots. From an evolutionary perspective, the dynamic transitions of research hotspots in tensegrity studies reflect both the field's progressive maturation and its expansion into emerging research frontiers. In addition, bioinspiration focuses on abstracting principles from nature to inspire novel solutions in other fields or sub-fields. Tensegrity structures exhibit explanatory compatibility with biological architectures. Based on this, the biotensegrity and tensegrity robots each belong to two bioinspiration pathways within the tensegrity framework. Tensegrity robots have emerged as the most prominent research sub-field within the broader conceptual framework of tensegrity, exhibiting a steadily increasing share of publications in the overall tensegrity literature. However, tensegrity robots still face a series of fundamental challenges, including the complexity of dynamic modeling and control, as well as the dilemma in structural optimization. Addressing these issues will likely depend on (1) improved theoretical models of tensegrity systems, (2) specialized tensegrity models tailored to different bio-inspired prototypes, and (3) novel integrations with various control methodologies. These directions are expected to remain key research focuses in the coming years.

从与张拉整体相关的生物结构到张拉整体机器人的研究路径:文献计量学分析。
本研究采用文献计量学方法,采用进化的视角,对张拉整体结构领域的总体发展现状和特征进行了全面系统的回顾。它还对张拉整体结构中的两种生物激励途径进行了分析。研究结果显示,与张拉整体相关的出版物数量持续增长,加上研究领域的范围不断扩大,表明该领域的研究势头不断升级。基于Web of Science (WOS)数据库中35年的张拉整体主题数据,我们对年度出版趋势、重要作者、研究领域、期刊和作者关键词共现图进行了详细分析。这些分析共同提供了对张拉整体领域现状的细致描述,以及两个关键的子领域:生物张拉整体和张拉整体机器人。此外,通过对研究关键词的分析和张拉整体领域研究热点的发展时间表,我们发现了主要研究重点的持续发展:从最初的张拉整体在生物领域的概念应用,到随后的张拉整体理论的细化和发展,最后到张拉整体机器人的不断进步。生物张拉整体和张拉整体机器人分别属于张拉整体框架内的两种不同的生物激励途径。我们得出结论,张拉整体机器人代表了当前张拉整体学科发展的关键节点。张拉整体机器人不仅是张拉整体在工程领域的应用,而且其研究的重点,如运动和控制,也与张拉整体理论范式中的经典问题表现出很强的相关性。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信