{"title":"Corrigendum to “Stability of linear operators in locally convex cones” [Bull. Sci. Math. 191 (2024) 103380]","authors":"Iz-iddine EL-Fassi , Abbas Najati","doi":"10.1016/j.bulsci.2025.103703","DOIUrl":"10.1016/j.bulsci.2025.103703","url":null,"abstract":"","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103703"},"PeriodicalIF":1.3,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144713637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Braid groups and mapping class groups for 2-orbifolds","authors":"Jonas Flechsig","doi":"10.1016/j.bulsci.2025.103705","DOIUrl":"10.1016/j.bulsci.2025.103705","url":null,"abstract":"<div><div>The main result of this article is that pure orbifold braid groups fit into an exact sequence<span><span><span><math><mn>1</mn><mo>→</mo><mi>K</mi><mo>→</mo><msubsup><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>o</mi><mi>r</mi><mi>b</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>Γ</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>L</mi><mo>)</mo><mo>)</mo><mover><mrow><mo>→</mo></mrow><mrow><msub><mrow><mi>ι</mi></mrow><mrow><msub><mrow><mi>PZ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></mrow></mover><msub><mrow><mi>PZ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>Γ</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>)</mo><mo>)</mo><mover><mrow><mo>→</mo></mrow><mrow><msub><mrow><mi>π</mi></mrow><mrow><msub><mrow><mi>PZ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></mrow></mover><msub><mrow><mi>PZ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>Γ</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>)</mo><mo>)</mo><mo>→</mo><mn>1</mn><mo>.</mo></math></span></span></span> In particular, we observe that the kernel <em>K</em> of <span><math><msub><mrow><mi>ι</mi></mrow><mrow><msub><mrow><mi>PZ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></math></span> is non-trivial. This corrects Theorem 2.14 in <span><span>[14]</span></span>. Moreover, we use the presentation of the pure orbifold mapping class group <span><math><msubsup><mrow><mi>PMap</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>id</mi><mo>,</mo><mi>o</mi><mi>r</mi><mi>b</mi></mrow></msubsup><mspace></mspace><mrow><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>Γ</mi></mrow></msub><mo>(</mo><mi>L</mi><mo>)</mo><mo>)</mo></mrow></math></span> from <span><span>[9]</span></span> to determine <em>K</em>. Comparing these orbifold mapping class groups with the orbifold braid groups, reveals a surprising behavior: in contrast to the classical case, the orbifold braid group is a proper quotient of the orbifold mapping class group. This yields a presentation of the pure orbifold braid group which allows us to read off the kernel <em>K</em>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103705"},"PeriodicalIF":0.9,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundedness of sublinear operators on grand central Orlicz-Morrey spaces","authors":"Mehvish Sultan , Babar Sultan","doi":"10.1016/j.bulsci.2025.103704","DOIUrl":"10.1016/j.bulsci.2025.103704","url":null,"abstract":"<div><div>In this work, our first objective is to define the ideas of the grand <em>λ</em>-central Orlicz-BMO spaces and the grand central Orlicz-Morrey spaces. Next we prove the boundedness of sublinear operator and fractional integral operator on grand central Orlicz-Morrey spaces under some proper assumptions.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103704"},"PeriodicalIF":1.3,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinxia Cen , J. Vanterler da C. Sousa , Leandro S. Tavares
{"title":"Existence and uniqueness for a new class of fractional Laplacian equations on compact Riemannian manifold","authors":"Jinxia Cen , J. Vanterler da C. Sousa , Leandro S. Tavares","doi":"10.1016/j.bulsci.2025.103702","DOIUrl":"10.1016/j.bulsci.2025.103702","url":null,"abstract":"<div><div>In this article, we are first interested in presenting some technical results (lemmas) in the Riemannian manifold. In this sense, we investigate the existence and uniqueness of non-trivial solutions for a new class of Laplacian on compact Riemannian manifolds.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103702"},"PeriodicalIF":1.3,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144696602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural stability and L-shadowing for flows","authors":"Nguyen Huu Du , Keonhee Lee , Ngocthach Nguyen","doi":"10.1016/j.bulsci.2025.103701","DOIUrl":"10.1016/j.bulsci.2025.103701","url":null,"abstract":"<div><div>In this paper, we study the <em>L</em>-shadowing property for flows which can be considered as a generalization of topologically hyperbolic systems admitting a non-isolated singularity, and characterize the <em>L</em>-shadowing property using finite shadowing property, limit shadowing property and <em>L</em>-coordinates. Finally, we prove that any structurally stable flow on a compact smooth manifold has the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> robust <em>L</em>-shadowing property, but the converse does not hold.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103701"},"PeriodicalIF":1.3,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144633828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global solvability in a two-species chemotaxis system with signal consumption","authors":"Linsong Wang , Bin Liu , Guoqiang Ren","doi":"10.1016/j.bulsci.2025.103700","DOIUrl":"10.1016/j.bulsci.2025.103700","url":null,"abstract":"<div><div>In this work, we consider the two-species chemotaxis system with Lotka-Volterra competitive kinetics in a bounded domain with smooth boundary. The main result in this paper asserts that at least in the framework of radial solutions immediate regularization occurs under an essentially optimal condition on the initial distribution of the population density.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103700"},"PeriodicalIF":1.3,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144587761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On solutions defined on the whole-line of chemotaxis-fluid systems in Lorentz spaces","authors":"Truong Xuan Pham","doi":"10.1016/j.bulsci.2025.103698","DOIUrl":"10.1016/j.bulsci.2025.103698","url":null,"abstract":"<div><div>In this paper, we investigate the existence, uniqueness and polynomial stability of mild solutions for the Keller-Segel-Navier-Stokes system on the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace></mspace><mspace></mspace><mo>(</mo><mi>d</mi><mo>⩾</mo><mn>4</mn><mo>)</mo></math></span> and on the whole line time-axis. We work in a singular class of Lorentz spaces, i.e., the weak-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> space. Our method is based on the dispersive, smoothing and Yamazaki estimates of the heat semigroup and a fixed point lemma.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103698"},"PeriodicalIF":1.3,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144570213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Smooth stable invariant foliations for nonuniform polynomial dichotomy","authors":"Xiao Li , Weijie Lu","doi":"10.1016/j.bulsci.2025.103699","DOIUrl":"10.1016/j.bulsci.2025.103699","url":null,"abstract":"<div><div>The main purpose of this article is to establish smooth stable invariant foliations in a Banach space for sufficiently small perturbations of a nonuniform polynomial dichotomy, where the linear operators acting on the Banach space are <em>compact</em> and the sufficiently small perturbations satisfy <em>conditions of Hörmander class functions</em>. In our proof, the difficulty lies in overcoming the smoothness of the Lyapunov-Perron equations with respect to the base point within the polynomial framework. By constructing appropriate nonuniform polynomial-type norms and using the fiber contraction theorem, we achieve the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> smoothness of the stable foliation under the bunching condition. Furthermore, we apply the polynomial-type Hölder inequality to prove that the stable foliation is of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span>, where <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. In particular, we present a differentiable stable foliation without any nonresonance conditions.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103699"},"PeriodicalIF":1.3,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144570108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Macroscopic limit from a structured population model to the Kirkpatrick-Barton model","authors":"G. Raoul","doi":"10.1016/j.bulsci.2025.103697","DOIUrl":"10.1016/j.bulsci.2025.103697","url":null,"abstract":"<div><div>We consider an ecology model in which the population is structured by a spatial variable and a phenotypic trait. The model combines a parabolic operator on the spatial variable with a kinetic operator on the trait variable. We prove the existence of solutions to that model, and show that these solutions are unique. The kinetic operator present in the model, that represents the effect of sexual reproductions, satisfies a Tanaka-type inequality: it implies a contraction of the Wasserstein distance in the space of phenotypic traits. We combine this contraction argument with parabolic estimates controlling the spatial regularity of solutions to prove the convergence of the population size and the mean phenotypic trait to solutions of the Kirkpatrick-Barton model, which is a well-established model in evolutionary ecology. Specifically, at high reproductive rates, we provide explicit convergence estimates for the moments of solutions of the kinetic model.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103697"},"PeriodicalIF":1.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144623837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Ext-Tor duality theorem, cohomological dimension, and applications","authors":"Rafael Holanda , Cleto B. Miranda-Neto","doi":"10.1016/j.bulsci.2025.103696","DOIUrl":"10.1016/j.bulsci.2025.103696","url":null,"abstract":"<div><div>We provide a duality theorem between Ext and Tor modules over a Cohen-Macaulay local ring possessing a canonical module, and use it to prove some freeness criteria for finite modules. The applications include a characterization of codimension three complete intersection ideals and progress on a long-held multi-conjecture of Vasconcelos. By a similar technique, we furnish another theorem which in addition makes use of the notion of cohomological dimension and is mainly of interest in dimension one; as an application, we show that the (still open) complete intersection case of the celebrated Huneke-Wiegand conjecture holds true provided that a single finiteness condition is satisfied.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103696"},"PeriodicalIF":1.3,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}