Bulletin des Sciences Mathematiques最新文献

筛选
英文 中文
The number of zeros of the sum of Abelian integrals satisfying two-dimensional Picard-Fuchs equations 满足二维皮卡德-富克斯方程的阿贝尔积分和的零个数
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-23 DOI: 10.1016/j.bulsci.2025.103643
Changjian Liu , Shaoqing Wang
{"title":"The number of zeros of the sum of Abelian integrals satisfying two-dimensional Picard-Fuchs equations","authors":"Changjian Liu ,&nbsp;Shaoqing Wang","doi":"10.1016/j.bulsci.2025.103643","DOIUrl":"10.1016/j.bulsci.2025.103643","url":null,"abstract":"<div><div>This paper is primarily devoted to developing a new criterion to show the upper bound for the number of zeros of the sum of Abelian integrals satisfying two-dimensional Picard-Fuchs equations, which is a generalization of the method by Gavrilov and Iliev (2003) <span><span>[13]</span></span>. The second goal of this paper is to investigate, using our new criterion, the hyperelliptic Abelian integrals related to the period annuli of a Hamiltonian system <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>y</mi><mo>,</mo><mover><mrow><mi>y</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>=</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>)</mo></math></span> under the polynomial deformation of degree <em>n</em>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>cos</mi><mo>⁡</mo><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>arccos</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></math></span> is the Chebyshev polynomial of the first kind, and to show that for every period annulus of such system, the number of zeros of the hyperelliptic Abelian integral is no more than <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, which is novel up to now.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"203 ","pages":"Article 103643"},"PeriodicalIF":1.3,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143903413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compactness and related properties of weighted composition operators on weighted BMOA spaces 加权BMOA空间上加权复合算子的紧性及相关性质
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-17 DOI: 10.1016/j.bulsci.2025.103642
David Norrbo
{"title":"Compactness and related properties of weighted composition operators on weighted BMOA spaces","authors":"David Norrbo","doi":"10.1016/j.bulsci.2025.103642","DOIUrl":"10.1016/j.bulsci.2025.103642","url":null,"abstract":"<div><div>It is shown that a large class of properties coincide for weighted composition operators on a large class of weighted VMOA spaces, including the ones with logarithmic weights and the ones with standard weights <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mrow><mo>|</mo><mi>z</mi><mo>|</mo></mrow><mo>)</mo></mrow><mrow><mo>−</mo><mi>c</mi></mrow></msup><mo>,</mo><mspace></mspace><mn>0</mn><mo>≤</mo><mi>c</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Some of these properties are compactness, weak compactness, complete continuity and strict singularity. A function-theoretic characterization for these properties is also given. Similar results are also proved for many weighted composition operators on similarly weighted BMOA spaces. The main results extend the theorems given in Laitila et al. (2023) <span><span>[16]</span></span>, and new test functions that are suitable for the weighted setting are developed.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"203 ","pages":"Article 103642"},"PeriodicalIF":1.3,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Étude statistique du facteur premier médian, 3 : lois de répartition 第一个中位数因子的统计研究,3:分布定律
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-16 DOI: 10.1016/j.bulsci.2025.103641
Jonathan Rotgé
{"title":"Étude statistique du facteur premier médian, 3 : lois de répartition","authors":"Jonathan Rotgé","doi":"10.1016/j.bulsci.2025.103641","DOIUrl":"10.1016/j.bulsci.2025.103641","url":null,"abstract":"<div><div>We consider the Gaussian limit law for the distribution of the middle prime factor of an integer, defined according to multiplicity or not. We obtain an optimal bound for the speed of convergence, thereby improving on previous estimates available in the literature.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"203 ","pages":"Article 103641"},"PeriodicalIF":1.3,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143886313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limit cycle bifurcations near double homoclinic and heteroclinic loops of a class of cubic Hamiltonian systems 一类三次哈密顿系统双同斜环和异斜环附近的极限环分岔
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-14 DOI: 10.1016/j.bulsci.2025.103640
Yanqin Xiong , Xiang Zhang
{"title":"Limit cycle bifurcations near double homoclinic and heteroclinic loops of a class of cubic Hamiltonian systems","authors":"Yanqin Xiong ,&nbsp;Xiang Zhang","doi":"10.1016/j.bulsci.2025.103640","DOIUrl":"10.1016/j.bulsci.2025.103640","url":null,"abstract":"<div><div>This paper studies the double homoclinic and heteroclinic bifurcations by perturbing a cubic Hamiltonian system with polynomial perturbations of degree <em>n</em>. It is proved that <span><math><mn>5</mn><mo>[</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mn>2</mn><mo>[</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span> limit cycles can be bifurcated from the period annuli near the double homoclicic loop and the heteroclinic loop, respectively. This result improves the lower bound on the number of the bifurcated limit cycles comparing with the known results for the related problems. To achieve our results we develop the techniques on calculating the base and the relative relations of the elements in the base, formed partly by curve integral functions along ovals of level sets of the Hamiltonian function, which appear in the expansions of the first order Melnikov functions.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103640"},"PeriodicalIF":1.3,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local second order horizontal Sobolev regularity for p-harmonic functions with Hörmander vector fields of step two 具有Hörmander矢量场的p-调和函数的局部二阶水平Sobolev正则性
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-10 DOI: 10.1016/j.bulsci.2025.103636
Chengwei Yu , Yu Liu
{"title":"Local second order horizontal Sobolev regularity for p-harmonic functions with Hörmander vector fields of step two","authors":"Chengwei Yu ,&nbsp;Yu Liu","doi":"10.1016/j.bulsci.2025.103636","DOIUrl":"10.1016/j.bulsci.2025.103636","url":null,"abstract":"<div><div>In this paper, we establish a trace inequality for any real symmetric square matrix and apply it to Hörmander vector fields of step two, which are denoted by <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. Let <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mn>4</mn></math></span> when <span><math><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span> and <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>3</mn><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span>. Then we utilize the trace inequality to prove the horizontal Sobolev <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>X</mi><mo>,</mo><mrow><mspace></mspace><mi>loc</mi><mspace></mspace></mrow></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msubsup></math></span>-regularity of the weak solution <em>u</em> to the degenerate subelliptic <em>p</em>-harmonic equation <span><math><msub><mrow><mo>△</mo></mrow><mrow><mi>X</mi><mo>,</mo><mi>p</mi></mrow></msub><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msubsup><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mo>|</mo><mi>X</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, namely, <span><math><mi>X</mi><mi>X</mi><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mrow><mspace></mspace><mi>loc</mi><mspace></mspace></mrow></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>. Compared to the case of Euclidean spaces <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> (<span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span>), the range of this determined <em>p</em> is already optimal.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103636"},"PeriodicalIF":1.3,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations of a class of Liouville-Caputo fractional order Pennes bioheat flow partial differential equations through orthogonal polynomials on collocation points 通过配点上的正交多项式研究一类 Liouville-Caputo 分数阶 Pennes 生物热流偏微分方程
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-10 DOI: 10.1016/j.bulsci.2025.103637
Vijay Saw , Pratibhamoy Das , Hari M. Srivastava
{"title":"Investigations of a class of Liouville-Caputo fractional order Pennes bioheat flow partial differential equations through orthogonal polynomials on collocation points","authors":"Vijay Saw ,&nbsp;Pratibhamoy Das ,&nbsp;Hari M. Srivastava","doi":"10.1016/j.bulsci.2025.103637","DOIUrl":"10.1016/j.bulsci.2025.103637","url":null,"abstract":"<div><div>In this study, we give a systematic discussion on convergent approximations of generalized nonlocal form of Pennes bioheat flow type parabolic partial differential equations. These flow problems frequently appear during the examination of the temperature variations in hyperthermia. Here, the nonlocal form involves Caputo-type fractional derivatives. The finite difference approximation in time is used on uniform steps to reduce the nondimensionalized form of the Pennes bioheat flow model into a semi-discrete continuous form in space. Thereafter, this semi-discrete problem is approximated by the third-kind shifted Chebyshev polynomials (TKSCP) on Chebyshev collocation points, at all time levels. This procedure converts the steady-state problem into a system of algebraic equations whose solution is the temperature distribution of the proposed model. In addition to the expected theoretical errors, a uniform convergence of the approximated solution to the exact solution is produced. We also investigated the effect of the order of fractional derivatives on the temperature distribution of living tissues computationally. Graphical results demonstrate that this generalized flow problem maintains a behavior similar to that of classical parabolic problems having integer-order partial derivatives when the fractional parameters tend to a positive integer.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103637"},"PeriodicalIF":1.3,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The existence of positive periodic solutions about generalized hematopoiesis model 广义造血模型正周期解的存在性
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-10 DOI: 10.1016/j.bulsci.2025.103638
Jia Yuan , Lishan Liu , Haibo Gu , Yonghong Wu
{"title":"The existence of positive periodic solutions about generalized hematopoiesis model","authors":"Jia Yuan ,&nbsp;Lishan Liu ,&nbsp;Haibo Gu ,&nbsp;Yonghong Wu","doi":"10.1016/j.bulsci.2025.103638","DOIUrl":"10.1016/j.bulsci.2025.103638","url":null,"abstract":"<div><div>This paper focuses on the generalized hematopoietic model with multiple variable delays and multiple exponents. Using the fixed point theorem of cone expansion and compression, it is proved that the hematopoiesis model in the sup-linear or sub-linear case must have a positive periodic solution. And it is deduced that there are two positive periodic solutions for the hematopoietic model when it has both sup-linear and sub-linear terms. In addition, several examples of the numerical simulations are given in this paper for illustration.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103638"},"PeriodicalIF":1.3,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seshadri constants of M‾0,n Seshadri常数M的0,n
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-10 DOI: 10.1016/j.bulsci.2025.103639
Shripad M. Garge , Arghya Pramanik , Aditya Subramaniam
{"title":"Seshadri constants of M‾0,n","authors":"Shripad M. Garge ,&nbsp;Arghya Pramanik ,&nbsp;Aditya Subramaniam","doi":"10.1016/j.bulsci.2025.103639","DOIUrl":"10.1016/j.bulsci.2025.103639","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> be the moduli space of stable rational <em>n</em>-pointed curves for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. We estimate lower bounds for Seshadri constants of nef <span><math><mi>Q</mi></math></span>-line bundles at arbitrary points on <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> for <span><math><mn>5</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>7</mn></math></span>. Our results for <span><math><mi>n</mi><mo>=</mo><mn>5</mn></math></span> generalise some results of Taro Sano (2014). We also estimate lower bounds for Seshadri constants of nef Keel divisors at arbitrary points on <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>, assuming a conjecture describing the Mori cone of <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103639"},"PeriodicalIF":1.3,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitesimal and tangential 16-th Hilbert problem on zero-cycles 零环上的无限小切16次希尔伯特问题
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-04 DOI: 10.1016/j.bulsci.2025.103634
J.L. Bravo , P. Mardešić , D. Novikov , J. Pontigo-Herrera
{"title":"Infinitesimal and tangential 16-th Hilbert problem on zero-cycles","authors":"J.L. Bravo ,&nbsp;P. Mardešić ,&nbsp;D. Novikov ,&nbsp;J. Pontigo-Herrera","doi":"10.1016/j.bulsci.2025.103634","DOIUrl":"10.1016/j.bulsci.2025.103634","url":null,"abstract":"<div><div>In this paper, given two polynomials <em>f</em> and <em>g</em> of one variable and a 0-cycle <em>C</em> of <em>f</em>, we consider the deformation <span><math><mi>f</mi><mo>+</mo><mi>ϵ</mi><mi>g</mi></math></span>. We define two functions: the <em>displacement function</em> <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span> and its first order approximation: the <em>abelian integral</em> <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</div><div>The <em>infinitesimal</em> and <em>tangential 16-th Hilbert problem</em> for zero-cycles are problems of counting isolated regular zeros of <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span>, for <em>ϵ</em> small, or of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, respectively.</div><div>We show that the two problems are not equivalent and find optimal bounds, in function of the degrees of <em>f</em> and <em>g</em>, for the infinitesimal and tangential 16-th Hilbert problem on zero-cycles. These two problems are the zero-dimensional analog of the classical infinitesimal and tangential 16-th Hilbert problems for vector fields in the plane.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103634"},"PeriodicalIF":1.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143823856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to: Half-integrality of line bundles on partial flag schemes of classical Lie groups 经典李群的部分标志格式上线束的半完整性的勘误
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-04 DOI: 10.1016/j.bulsci.2025.103626
Takuma Hayashi
{"title":"Corrigendum to: Half-integrality of line bundles on partial flag schemes of classical Lie groups","authors":"Takuma Hayashi","doi":"10.1016/j.bulsci.2025.103626","DOIUrl":"10.1016/j.bulsci.2025.103626","url":null,"abstract":"<div><div>In this note, I fix mistakes on the continuity arguments concerning the profinite topology of the Galois group of an infinite Galois extension of fields in my previous paper <span><span>[6]</span></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103626"},"PeriodicalIF":1.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信