{"title":"On neutral Tannakian subcategories of loop quiver representations","authors":"Umesh V. Dubey, Parul Keshari","doi":"10.1016/j.bulsci.2024.103484","DOIUrl":"10.1016/j.bulsci.2024.103484","url":null,"abstract":"<div><p>We explored the categories of (twisted) representations of a loop quiver. These representation categories have two choices of tensor structures: Kronecker tensor and Simpson tensor. By studying the rigidity properties, we have provided several examples of (semi-) Tannakian categories using the category of (twisted) representations of a loop quiver for both tensors.</p><p>We have introduced the concept of essentially finite loop quiver bundles based on the work of Nori, Borne, and Vistoli. As an application, we have given some examples of (semi-) Tannakian categories of equivariant bundles and Hitchin pairs. Additionally, we have defined the notion of H-nflat twisted loop quiver bundles and have established Tannakian category structures for certain classes of varieties.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103484"},"PeriodicalIF":1.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hopf bifurcation in a class of piecewise smooth near-Hamiltonian systems","authors":"Maoan Han, Shanshan Liu","doi":"10.1016/j.bulsci.2024.103471","DOIUrl":"10.1016/j.bulsci.2024.103471","url":null,"abstract":"<div><p>In this paper, we discuss Hopf bifurcation for planar piecewise smooth near-Hamiltonian systems with a center of parabolic-parabolic (PP) or focus-parabolic (FP) type. By studying asymptotic expansion of the first order Melnikov function, we obtain theorems to find an upper bound and a lower bound of the number of limit cycles near the center of these two types, respectively. Finally we provide two applications.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103471"},"PeriodicalIF":1.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zero-Hopf bifurcation of limit cycles in certain differential systems","authors":"Bo Huang , Dongming Wang","doi":"10.1016/j.bulsci.2024.103472","DOIUrl":"10.1016/j.bulsci.2024.103472","url":null,"abstract":"<div><p>This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension <em>n</em>, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order <em>m</em>. Denote by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> the maximum number of limit cycles of the system that can be detected by using the averaging method of order <em>k</em>. We prove that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⋅</mo><msup><mrow><mi>m</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>k</mi><mi>m</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for generic <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>></mo><mn>1</mn></math></span>. The exact numbers of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations, a four-dimensional hyperchaotic differential system and a model of nuclear spin generator.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103472"},"PeriodicalIF":1.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite-time H∞ synchronization of semi-Markov jump neural networks with two delay components with stochastic sampled-data control","authors":"T. Radhika, A. Chandrasekar, V. Vijayakumar","doi":"10.1016/j.bulsci.2024.103482","DOIUrl":"10.1016/j.bulsci.2024.103482","url":null,"abstract":"<div><p>This article investigates the finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> synchronization for semi-Markov jump neural networks with two delay components based on stochastic sampled data control. Additionally, the parametric uncertainties are randomly varying which follows the Bernoulli distributed sequences. In the stochastic sampled data control, the sampling interval <span><math><mo>′</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is supposed to be two different values in the time-varying component with given probability conditions. By constructing triple and quadruple integral term in the Lyapunov-Krasovskii functional (LKF) a new integral inequality technique is addressed to derive the main results. Dissimilar from previous literature, involving the new integral inequality, a delay dependent finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> synchronization requirements are acquired with regard to linear matrix inequalities (LMIs). In the end, the effectiveness of the considered stochastic sampled data control finite time synchronization scheme is highlighted by numerical examples.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103482"},"PeriodicalIF":1.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-index upper semicontinuity of pullback random attractors for fractional discrete FitzHugh-Nagumo systems with delays driven by Wong-Zakai approximations","authors":"Qiangheng Zhang","doi":"10.1016/j.bulsci.2024.103483","DOIUrl":"10.1016/j.bulsci.2024.103483","url":null,"abstract":"<div><p>In this paper, we consider the global well-posedness and multi-index stability of pullback random attractors for random fractional retarded lattice FitzHugh-Nagumo systems with nonlinear Wong-Zakai noise and non-autonomous forcing term. We use the idea of Caraballo et al. (2014) <span><span>[2]</span></span> to prove the global well-posedness. Based on the global well-posedness of the lattice FitzHugh-Nagumo system, we study the existence, uniqueness and upper semicontinuity of pullback random attractors <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ϱ</mi></mrow><mrow><mi>δ</mi></mrow></msubsup><mo>=</mo><mo>{</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ϱ</mi></mrow><mrow><mi>δ</mi></mrow></msubsup><mo>(</mo><mi>τ</mi><mo>,</mo><mi>ω</mi><mo>)</mo><mo>:</mo><mi>τ</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mi>ω</mi><mo>∈</mo><mi>Ω</mi><mo>}</mo></math></span>. More precisely, we first utilize the method of tail-estimates of solution and Ascoli-Arzelà theorem to prove the existence and uniqueness of pullback random attractors, and then investigate the four types of upper semicontinuity of pullback random attractors: (1) The long time stability of pullback random attractors as the time parameter <em>τ</em> approaches negative infinity; (2) The upper semicontinuity of pullback random attractors as the step-length <em>δ</em> of the Wong-Zakai approximation tends to positive infinity; (3) The upper semicontinuity of pullback random attractors as the delay time <span><math><mi>ϱ</mi><mo>→</mo><mn>0</mn></math></span>; (4) The upper semicontinuity of pullback random attractors from non-autonomous to autonomous.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103483"},"PeriodicalIF":1.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic behavior for kirchhoff type stochastic plate equations on unbounded domains","authors":"Xiaobin Yao, Yang Bai","doi":"10.1016/j.bulsci.2024.103470","DOIUrl":"10.1016/j.bulsci.2024.103470","url":null,"abstract":"<div><p>This paper is concerned with the asymptotic behaviour of solutions to a class of kirchhoff type stochastic nonlinear plate equations with dispersive and viscosity dissipative terms driven additive noise defined on the entire space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The existence, uniqueness as well as upper semi-continuity of pullback random attractors are proved in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103470"},"PeriodicalIF":1.3,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correspondence between projective bundles over P2 and rational hypersurfaces in P4","authors":"Shivam Vats","doi":"10.1016/j.bulsci.2024.103469","DOIUrl":"10.1016/j.bulsci.2024.103469","url":null,"abstract":"<div><p>Let <em>E</em> be the restriction of the null-correlation bundle on <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> to a hyperplane. In this article, we show that the projective bundle <span><math><mi>P</mi><mo>(</mo><mi>E</mi><mo>)</mo></math></span> is isomorphic to a blow-up of a non-singular quadric in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> along a line. We also prove that for each <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, there are hypersurfaces of degree <em>d</em> containing a line in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> whose blow-up along the line is isomorphic to the projective bundle over <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103469"},"PeriodicalIF":1.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141695036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of the discrete Hardy inequality","authors":"Prasun Roychowdhury , Durvudkhan Suragan","doi":"10.1016/j.bulsci.2024.103468","DOIUrl":"10.1016/j.bulsci.2024.103468","url":null,"abstract":"<div><p>We establish a novel improvement of the classical discrete Hardy inequality, which gives the discrete version of a recent (continuous) inequality of Frank, Laptev, and Weidl. Our arguments build on certain weighted inequalities based on discrete analogues of symmetric decreasing rearrangement techniques.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103468"},"PeriodicalIF":1.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometric estimates and comparability of Eisenman volume elements with the Bergman kernel on (C-)convex domains","authors":"","doi":"10.1016/j.bulsci.2024.103467","DOIUrl":"10.1016/j.bulsci.2024.103467","url":null,"abstract":"<div><p>We establish geometric upper and lower estimates for the Carathéodory and Kobayashi-Eisenman volume elements on the class of non-degenerate convex domains, as well as on the more general class of non-degenerate <span><math><mi>C</mi></math></span>-convex domains. As a consequence, we obtain explicit universal lower bounds for the quotient invariant both on non-degenerate convex and <span><math><mi>C</mi></math></span>-convex domains. Here the bounds we derive, for the above mentioned classes in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, only depend on the dimension <em>n</em> for a fixed <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Finally, it is shown that the Bergman kernel is comparable with these volume elements up to small/large constants depending only on <em>n</em>.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103467"},"PeriodicalIF":1.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Commutativity of Hankel and Toeplitz operators on the Hardy space of the n-torus","authors":"Raúl E. Curto , Gopal Datt , Bhawna Bansal Gupta","doi":"10.1016/j.bulsci.2024.103466","DOIUrl":"10.1016/j.bulsci.2024.103466","url":null,"abstract":"<div><p>We consider Hankel and Toeplitz operators on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, the Hardy space of the <em>n</em>-torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Given symbols <em>φ</em> and <em>ψ</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with suitable properties, we obtain necessary and sufficient conditions for the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and the Toeplitz operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>φ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> to commute. We then extend the study to the more general situation where no assumptions are imposed on <em>φ</em>, and provide new, non-trivial necessary conditions for the commutativity of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>ψ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>φ</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We also show that certain well known commutativity results between Hankel and Toeplitz operators in the one-variable case do not extend to the multivariable setting.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"194 ","pages":"Article 103466"},"PeriodicalIF":1.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}