Bilinear singular integral operators with generalized kernels and their commutators on product of (grand) generalized fractional (weighted) Morrey spaces
Guanghui Lu, Miaomiao Wang, Shuangping Tao, Ronghui Liu
{"title":"Bilinear singular integral operators with generalized kernels and their commutators on product of (grand) generalized fractional (weighted) Morrey spaces","authors":"Guanghui Lu, Miaomiao Wang, Shuangping Tao, Ronghui Liu","doi":"10.1016/j.bulsci.2024.103544","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this article is to establish the boundedness of a bilinear singular integral operator <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> with generalized kernels and its commutator <span><math><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> formed by <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mi>BMO</mi></mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and the <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> on product of generalized fractional Morrey spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, product of generalized fractional weighted Morrey spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and product of grand generalized fractional weighted Morrey spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>σ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>σ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is a positive, increasing function defined on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and satisfies doubling conditions, <em>ω</em> is an <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> weight, <span><math><mi>θ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>σ</mi><mo><</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>η</mi></mrow></mfrac><mo>)</mo></math></span> with <span><math><mi>η</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>. Via some known results, the authors show that the <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> associated with BMO functions are bounded from product of spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> into spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, and they are also bounded from product of spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> into generalized fractional weak Morrey spaces <span><math><mi>W</mi><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>η</mi><mo>=</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></math></span> for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfrac><mo>)</mo><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. Furthermore, the boundedness of the <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> on product of spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and product of spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>σ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>σ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is obtained, respectively.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103544"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001623","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this article is to establish the boundedness of a bilinear singular integral operator with generalized kernels and its commutator formed by and the on product of generalized fractional Morrey spaces , product of generalized fractional weighted Morrey spaces and product of grand generalized fractional weighted Morrey spaces , where is a positive, increasing function defined on and satisfies doubling conditions, ω is an weight, , and with . Via some known results, the authors show that the and associated with BMO functions are bounded from product of spaces into spaces , and they are also bounded from product of spaces into generalized fractional weak Morrey spaces , where and for . Furthermore, the boundedness of the and on product of spaces and product of spaces is obtained, respectively.