Bilinear singular integral operators with generalized kernels and their commutators on product of (grand) generalized fractional (weighted) Morrey spaces

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Guanghui Lu, Miaomiao Wang, Shuangping Tao, Ronghui Liu
{"title":"Bilinear singular integral operators with generalized kernels and their commutators on product of (grand) generalized fractional (weighted) Morrey spaces","authors":"Guanghui Lu,&nbsp;Miaomiao Wang,&nbsp;Shuangping Tao,&nbsp;Ronghui Liu","doi":"10.1016/j.bulsci.2024.103544","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this article is to establish the boundedness of a bilinear singular integral operator <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> with generalized kernels and its commutator <span><math><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> formed by <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mi>BMO</mi></mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and the <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> on product of generalized fractional Morrey spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, product of generalized fractional weighted Morrey spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and product of grand generalized fractional weighted Morrey spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>σ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>σ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is a positive, increasing function defined on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and satisfies doubling conditions, <em>ω</em> is an <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> weight, <span><math><mi>θ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>σ</mi><mo>&lt;</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>η</mi></mrow></mfrac><mo>)</mo></math></span> with <span><math><mi>η</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>. Via some known results, the authors show that the <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> associated with BMO functions are bounded from product of spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> into spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, and they are also bounded from product of spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> into generalized fractional weak Morrey spaces <span><math><mi>W</mi><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>φ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>η</mi><mo>=</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></math></span> for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfrac><mo>)</mo><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. Furthermore, the boundedness of the <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> on product of spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and product of spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>φ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>σ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>×</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>φ</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>σ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is obtained, respectively.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103544"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001623","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this article is to establish the boundedness of a bilinear singular integral operator T˜ with generalized kernels and its commutator T˜b1,b2 formed by b1,b2BMO(Rn) and the T˜ on product of generalized fractional Morrey spaces Lp1,η1,φ(Rn)×Lp2,η2,φ(Rn), product of generalized fractional weighted Morrey spaces Lω1p1,η1,φ(Rn)×Lω2p2,η2,φ(Rn) and product of grand generalized fractional weighted Morrey spaces Lω1p1),η1,φ,θ,σ(Rn)×Lω2p2),η2,φ,θ,σ(Rn), where φ() is a positive, increasing function defined on [0,) and satisfies doubling conditions, ω is an Ap(Rn) weight, θ>0, σ<p1 and p(1,nη) with η(0,n). Via some known results, the authors show that the T˜ and T˜b1,b2 associated with BMO functions are bounded from product of spaces Lp1,η1,φ(Rn)×Lp2,η2,φ(Rn) into spaces Lp,η,φ(Rn), and they are also bounded from product of spaces Lp1,η1,φ(Rn)×Lp2,η2,φ(Rn) into generalized fractional weak Morrey spaces WLp,η,φ(Rn), where η=η1+η2 and 1p=1p1+1p2 for pi(1,nηi)(i=1,2). Furthermore, the boundedness of the T˜ and T˜b1,b2 on product of spaces Lω1p1,η1,φ(Rn)×Lω2p2,η2,φ(Rn) and product of spaces Lω1p1),η1,φ,θ,σ(Rn)×Lω2p2),η2,φ,θ,σ(Rn) is obtained, respectively.
广义分数(加权)Morrey空间积上的双线性广义核奇异积分算子及其对易子
本文的目的是建立广义核双线性奇异积分算子T ~及其换易子T ~ b1,b2的有界性,由b1,b2∈BMO(Rn)与广义分数阶Morrey空间Lp1,η1,φ(Rn)×Lp2,η2,φ(Rn)的乘积,广义分数阶加权Morrey空间Lω1p1,η1,φ(Rn)×Lω2p2,η2,φ(Rn)的乘积和广义分数阶加权Morrey空间Lω1p1,η1,φ,θ,σ(Rn)×Lω2p2,η2,φ,θ,σ(Rn)的乘积,其中φ(⋅)为正。定义在[0,∞)上且满足倍增条件的递增函数,ω为Ap(Rn)权值θ>;0, σ<p−1,且p∈(1,nη),其中η∈(0,n)。通过一些已知的结果,作者证明了与BMO函数相关的T ~和T ~ b1,b2可以从空间Lp1,η1,φ(Rn)×Lp2,η2,φ(Rn)的积有界到空间Lp,η,φ(Rn),它们也可以从空间Lp1,η1,φ(Rn)×Lp2,η2,φ(Rn)的积有界到广义分数弱Morrey空间WLp,η,φ(Rn),其中对于pi∈(1,nηi)(i=1,2),η =η1+η2和1p=1p1+1p2。进一步得到了T ~和T ~ b1,b2在Lω1p1,η1,φ(Rn)×Lω2p2,η2,φ(Rn)积和Lω1p1,η1,φ,θ,σ(Rn)×Lω2p2,η2,φ,θ,σ(Rn)积上的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信