Representability of G-functions as rational functions in hypergeometric series

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
T. Dreyfus , T. Rivoal
{"title":"Representability of G-functions as rational functions in hypergeometric series","authors":"T. Dreyfus ,&nbsp;T. Rivoal","doi":"10.1016/j.bulsci.2024.103542","DOIUrl":null,"url":null,"abstract":"<div><div>Fresán and Jossen have given a negative answer to a question of Siegel about the representability of every <em>E</em>-function as a polynomial with algebraic coefficients in <em>E</em>-functions of type <span><math><mmultiscripts><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><none></none><mprescripts></mprescripts><mrow><mi>p</mi></mrow><none></none></mmultiscripts><mo>[</mo><munder><mrow><mi>a</mi></mrow><mo>_</mo></munder><mo>;</mo><munder><mrow><mi>b</mi></mrow><mo>_</mo></munder><mo>;</mo><mi>γ</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>]</mo></math></span> with <span><math><mi>q</mi><mo>≥</mo><mi>p</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>γ</mi><mo>∈</mo><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></math></span> and rational parameters <span><math><munder><mrow><mi>a</mi></mrow><mo>_</mo></munder><mo>,</mo><munder><mrow><mi>b</mi></mrow><mo>_</mo></munder></math></span>. In this paper, we study, in a more general context, a similar question for <em>G</em>-functions asked by Fischler and the second author: can every <em>G</em>-function be represented as a polynomial with algebraic coefficients in <em>G</em>-functions of type <span><math><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msub><mrow><mo>⋅</mo></mrow><mrow><mi>p</mi></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>[</mo><munder><mrow><mi>a</mi></mrow><mo>_</mo></munder><mo>;</mo><munder><mrow><mi>b</mi></mrow><mo>_</mo></munder><mo>;</mo><mi>λ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>]</mo></math></span> with <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, rational parameters <span><math><munder><mrow><mi>a</mi></mrow><mo>_</mo></munder><mo>,</mo><munder><mrow><mi>b</mi></mrow><mo>_</mo></munder></math></span> and <span><math><mi>μ</mi><mo>,</mo><mi>λ</mi></math></span> algebraic over <span><math><mi>Q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> with <span><math><mi>λ</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span>? They have shown the answer to be negative under a generalization of Grothendieck's Period Conjecture and a technical assumption on the <em>λ</em>'s. Using differential Galois theory, we prove that, for every <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span>, there exists a <em>G</em>-function which can not be represented as a rational function with coefficients in <span><math><mover><mrow><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>‾</mo></mover></math></span> of solutions of linear differential equations with coefficients in <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and at most <em>N</em> singularities in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. As a corollary, we deduce that not all <em>G</em>-functions can be represented as a rational function in hypergeometric series of the above mentioned type, when the <em>λ</em>'s are rational functions with degrees of their numerators and denominators bounded by an arbitrarily large fixed constant. This provides an unconditional negative answer to the question asked by Fischler and the second author for such <em>λ</em>'s.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103542"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972400160X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Fresán and Jossen have given a negative answer to a question of Siegel about the representability of every E-function as a polynomial with algebraic coefficients in E-functions of type Fqp[a_;b_;γxqp+1] with qp0, γQ and rational parameters a_,b_. In this paper, we study, in a more general context, a similar question for G-functions asked by Fischler and the second author: can every G-function be represented as a polynomial with algebraic coefficients in G-functions of type μ(x)pFp1[a_;b_;λ(x)] with p1, rational parameters a_,b_ and μ,λ algebraic over Q(x) with λ(0)=0? They have shown the answer to be negative under a generalization of Grothendieck's Period Conjecture and a technical assumption on the λ's. Using differential Galois theory, we prove that, for every NN, there exists a G-function which can not be represented as a rational function with coefficients in C(x) of solutions of linear differential equations with coefficients in C(x) and at most N singularities in P1(C). As a corollary, we deduce that not all G-functions can be represented as a rational function in hypergeometric series of the above mentioned type, when the λ's are rational functions with degrees of their numerators and denominators bounded by an arbitrarily large fixed constant. This provides an unconditional negative answer to the question asked by Fischler and the second author for such λ's.
超几何级数中g函数作为有理函数的可表示性
Fresán和Jossen对Siegel的一个问题给出了否定的答案,该问题是关于在类型为Fqp[a_;b_;γxq−p+1]且q≥p≥0,γ∈q,有理参数a_,b_的e -函数中,每个e -函数作为具有代数系数的多项式的可表示性。在更一般的情况下,我们研究了Fischler和第二作者提出的关于g -函数的类似问题:在有理参数a_,b_和μ,λ (x) =0的Q(x)上,是否可以将g -函数表示为具有代数系数的多项式类型为μ(x)⋅pFp−1[a_;b_;λ(x)]的g -函数中,每个g -函数都可以表示为具有代数系数的多项式?在格罗滕迪克周期猜想的推广和λ的技术假设下,他们证明了答案是否定的。利用微分伽罗瓦理论,证明了对于每一个N∈N,存在一个g函数,其不能以系数在C(x)的有理函数的形式表示,其系数在C(x)的线性微分方程的解的形式存在,且在P1(C)中至多有N个奇异点。作为推论,我们推导出并非所有的g函数都可以表示为上述类型的超几何级数中的有理函数,当λ's是其分子和分母的度数由任意大的固定常数限定的有理函数时。这为Fischler和第二作者提出的关于λ的问题提供了一个无条件的否定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信