{"title":"Liouville theorems for Choquard-Pekar equations on the half space","authors":"Huxiao Luo , Yating Xu","doi":"10.1016/j.bulsci.2024.103533","DOIUrl":null,"url":null,"abstract":"<div><div>We study the following Dirichlet problem to the Choquard-Pekar equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mfrac><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>β</mi></mrow></msup></mrow></mfrac><mi>d</mi><mi>y</mi><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≡</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∉</mo><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> For <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>β</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mfrac><mrow><mn>2</mn><mo>+</mo><mi>β</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>Ω</mi><mo>=</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, we prove the non-existence of non-negative solutions by the method of moving planes. As an application of the Liouville theorem in half space and the Liouville theorem in whole space obtained in <span><span>[13]</span></span>, <span><span>[28]</span></span>, we carry on blowing-up and rescaling argument on the Choquard-Pekar equation in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and thus obtain a priori estimates on the positive solutions. Based on this estimate and the Leray-Schauder degree theory, we establish the existence of positive solutions.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"197 ","pages":"Article 103533"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001519","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the following Dirichlet problem to the Choquard-Pekar equation For , and , we prove the non-existence of non-negative solutions by the method of moving planes. As an application of the Liouville theorem in half space and the Liouville theorem in whole space obtained in [13], [28], we carry on blowing-up and rescaling argument on the Choquard-Pekar equation in a bounded domain , and thus obtain a priori estimates on the positive solutions. Based on this estimate and the Leray-Schauder degree theory, we establish the existence of positive solutions.