Liouville theorems for Choquard-Pekar equations on the half space

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Huxiao Luo , Yating Xu
{"title":"Liouville theorems for Choquard-Pekar equations on the half space","authors":"Huxiao Luo ,&nbsp;Yating Xu","doi":"10.1016/j.bulsci.2024.103533","DOIUrl":null,"url":null,"abstract":"<div><div>We study the following Dirichlet problem to the Choquard-Pekar equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mfrac><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi><mo>−</mo><mi>β</mi></mrow></msup></mrow></mfrac><mi>d</mi><mi>y</mi><mo>)</mo></mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≡</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∉</mo><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> For <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>β</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mfrac><mrow><mn>2</mn><mo>+</mo><mi>β</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> and <span><math><mi>Ω</mi><mo>=</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, we prove the non-existence of non-negative solutions by the method of moving planes. As an application of the Liouville theorem in half space and the Liouville theorem in whole space obtained in <span><span>[13]</span></span>, <span><span>[28]</span></span>, we carry on blowing-up and rescaling argument on the Choquard-Pekar equation in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and thus obtain a priori estimates on the positive solutions. Based on this estimate and the Leray-Schauder degree theory, we establish the existence of positive solutions.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"197 ","pages":"Article 103533"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001519","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following Dirichlet problem to the Choquard-Pekar equation{Δu=(Ωup(y)|xy|nβdy)uq,xΩ,u(x)0,xΩ. For 1<pn+βn2, 1q2+βn2 and Ω=R+n, we prove the non-existence of non-negative solutions by the method of moving planes. As an application of the Liouville theorem in half space and the Liouville theorem in whole space obtained in [13], [28], we carry on blowing-up and rescaling argument on the Choquard-Pekar equation in a bounded domain ΩRn, and thus obtain a priori estimates on the positive solutions. Based on this estimate and the Leray-Schauder degree theory, we establish the existence of positive solutions.
半空间上乔夸德-佩卡方程的柳维尔定理
我们研究乔夸德-佩卡方程{-Δu=(∫Ωup(y)|x-y|n-βdy)uq,x∈Ω,u(x)≡0,x∉Ω的如下德里赫特问题。对于 1<p≤n+βn-2,1≤q≤2+βn-2 和 Ω=R+n,我们用移动平面的方法证明了非负解的不存在性。作为在[13]、[28]中得到的半空间李厄维尔定理和全空间李厄维尔定理的应用,我们对有界域Ω⊂Rn 中的乔夸德-佩卡方程进行了吹胀和重定标论证,从而得到了正解的先验估计。基于这一估计和勒雷-肖德尔度理论,我们确定了正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信