Global strong solutions to nonlocal Benjamin-Bona-Mahony equations with exponential nonlinearities

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Nguyen Huy Tuan , Bui Dai Nghia , Nguyen Anh Tuan
{"title":"Global strong solutions to nonlocal Benjamin-Bona-Mahony equations with exponential nonlinearities","authors":"Nguyen Huy Tuan ,&nbsp;Bui Dai Nghia ,&nbsp;Nguyen Anh Tuan","doi":"10.1016/j.bulsci.2024.103539","DOIUrl":null,"url":null,"abstract":"<div><div>In the current work, we consider the Cauchy problem for a class of adjusted Benjamin-Bona-Mahony (BBM) equations. These equations are modified by considering the time-fractional Caputo derivative of order <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> (instead of the classical one) and an additional nonlinearity of exponential type. The first main result includes the unique global existence of strong solutions. The approach for this goal can be summarized as follows. First of all, we use the standard contraction arguments to prove the local existence and uniqueness of a mild solution. Next, apply a weak version of Grönwall's inequality to improve the temporal regularity of the solutions. Using this regularity, we deduce energy estimates for solutions which helps us to obtain the global boundedness. The second aim of the study is about the behavior of solutions according to the fractional order <em>α</em>. Precisely, we show that our solutions converge to those of the classical model (with integer order derivative) as <em>α</em> approaches <span><math><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. The desired result is derived by some singular integral estimates which is the combination of some essential basic inequalities.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103539"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972400157X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the current work, we consider the Cauchy problem for a class of adjusted Benjamin-Bona-Mahony (BBM) equations. These equations are modified by considering the time-fractional Caputo derivative of order α(0,1) (instead of the classical one) and an additional nonlinearity of exponential type. The first main result includes the unique global existence of strong solutions. The approach for this goal can be summarized as follows. First of all, we use the standard contraction arguments to prove the local existence and uniqueness of a mild solution. Next, apply a weak version of Grönwall's inequality to improve the temporal regularity of the solutions. Using this regularity, we deduce energy estimates for solutions which helps us to obtain the global boundedness. The second aim of the study is about the behavior of solutions according to the fractional order α. Precisely, we show that our solutions converge to those of the classical model (with integer order derivative) as α approaches 1. The desired result is derived by some singular integral estimates which is the combination of some essential basic inequalities.
指数非线性非局部Benjamin-Bona-Mahony方程的全局强解
本文研究一类经调整的Benjamin-Bona-Mahony (BBM)方程的Cauchy问题。通过考虑阶α∈(0,1)的时间分数Caputo导数(而不是经典的)和指数型的附加非线性,对这些方程进行了修改。第一个主要结果包括强解的唯一全局存在性。实现这一目标的方法可以概括如下。首先,利用标准压缩论证证明了一类温和解的局部存在唯一性。接下来,应用Grönwall不等式的弱版本来改进解的时间规律性。利用这一规律性,我们推导出解的能量估计,这有助于我们获得全局有界性。研究的第二个目的是关于分数阶α解的行为。确切地说,我们证明了当α接近1−时,我们的解收敛于经典模型(具有整数阶导数)的解。所期望的结果是由一些奇异积分估计得到的,这些奇异积分估计是一些重要的基本不等式的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信