bsamzier曲线和Takagi函数

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Lenka Ptáčková , Franco Vivaldi
{"title":"bsamzier曲线和Takagi函数","authors":"Lenka Ptáčková ,&nbsp;Franco Vivaldi","doi":"10.1016/j.bulsci.2024.103543","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Bézier curves with complex parameters, and we determine explicitly the affine iterated function system (IFS) corresponding to the de Casteljau subdivision algorithm, together with the complex parametric domain over which such an IFS has a unique global connected attractor. For a specific family of complex parameters having vanishing imaginary part, we prove that the Takagi fractal curve is the attractor, under suitable scaling.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103543"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bézier curves and the Takagi function\",\"authors\":\"Lenka Ptáčková ,&nbsp;Franco Vivaldi\",\"doi\":\"10.1016/j.bulsci.2024.103543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider Bézier curves with complex parameters, and we determine explicitly the affine iterated function system (IFS) corresponding to the de Casteljau subdivision algorithm, together with the complex parametric domain over which such an IFS has a unique global connected attractor. For a specific family of complex parameters having vanishing imaginary part, we prove that the Takagi fractal curve is the attractor, under suitable scaling.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"199 \",\"pages\":\"Article 103543\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724001611\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001611","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑具有复参数的bsamzier曲线,明确地确定了与de Casteljau细分算法相对应的仿射迭代函数系统(IFS),以及该系统具有唯一全局连通吸引子的复参数域。对于一类具有虚部消失的复参数族,在适当的标度下,证明了Takagi分形曲线是吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bézier curves and the Takagi function
We consider Bézier curves with complex parameters, and we determine explicitly the affine iterated function system (IFS) corresponding to the de Casteljau subdivision algorithm, together with the complex parametric domain over which such an IFS has a unique global connected attractor. For a specific family of complex parameters having vanishing imaginary part, we prove that the Takagi fractal curve is the attractor, under suitable scaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信