{"title":"bsamzier曲线和Takagi函数","authors":"Lenka Ptáčková , Franco Vivaldi","doi":"10.1016/j.bulsci.2024.103543","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Bézier curves with complex parameters, and we determine explicitly the affine iterated function system (IFS) corresponding to the de Casteljau subdivision algorithm, together with the complex parametric domain over which such an IFS has a unique global connected attractor. For a specific family of complex parameters having vanishing imaginary part, we prove that the Takagi fractal curve is the attractor, under suitable scaling.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103543"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bézier curves and the Takagi function\",\"authors\":\"Lenka Ptáčková , Franco Vivaldi\",\"doi\":\"10.1016/j.bulsci.2024.103543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider Bézier curves with complex parameters, and we determine explicitly the affine iterated function system (IFS) corresponding to the de Casteljau subdivision algorithm, together with the complex parametric domain over which such an IFS has a unique global connected attractor. For a specific family of complex parameters having vanishing imaginary part, we prove that the Takagi fractal curve is the attractor, under suitable scaling.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"199 \",\"pages\":\"Article 103543\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724001611\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001611","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We consider Bézier curves with complex parameters, and we determine explicitly the affine iterated function system (IFS) corresponding to the de Casteljau subdivision algorithm, together with the complex parametric domain over which such an IFS has a unique global connected attractor. For a specific family of complex parameters having vanishing imaginary part, we prove that the Takagi fractal curve is the attractor, under suitable scaling.