A source identification problem for the bi-parabolic equation containing a poly-harmonic operator

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Dang Duc Trong , Bui Thanh Duy , Nguyen Dang Minh
{"title":"A source identification problem for the bi-parabolic equation containing a poly-harmonic operator","authors":"Dang Duc Trong ,&nbsp;Bui Thanh Duy ,&nbsp;Nguyen Dang Minh","doi":"10.1016/j.bulsci.2025.103736","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we address the source identification problem for the bi-parabolic equation involving a operator. Specifically, we investigate the equation <span><math><msup><mrow><mo>(</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>⋅</mo><mi>ψ</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, where <span><math><mi>A</mi></math></span> denotes a poly-harmonic operator. Given the perturbed data of <em>ψ</em> and <span><math><mi>u</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> (where <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span>), our objective is to determine <em>f</em>. Although several scientific publications have explored regularization techniques for bi-parabolic problems, the existing literature remains limited. By relaxing certain conditions on the function <em>ψ</em> and employing a truncation regularization method while considering the problem on an unbounded domain, we believe our results provide valuable insights.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103736"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001629","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the source identification problem for the bi-parabolic equation involving a operator. Specifically, we investigate the equation (t+A)2u(t)=fψ(t), where A denotes a poly-harmonic operator. Given the perturbed data of ψ and u(T) (where T>0), our objective is to determine f. Although several scientific publications have explored regularization techniques for bi-parabolic problems, the existing literature remains limited. By relaxing certain conditions on the function ψ and employing a truncation regularization method while considering the problem on an unbounded domain, we believe our results provide valuable insights.
含多谐算子的双抛物方程的源识别问题
本文研究了一类含算子的双抛物型方程的源识别问题。具体来说,我们研究了方程(∂t+A)2u(t)=f⋅ψ(t),其中A表示一个多谐算子。给定ψ和u(T)(其中T>;0)的扰动数据,我们的目标是确定f。尽管一些科学出版物已经探索了双抛物问题的正则化技术,但现有文献仍然有限。通过放宽函数ψ的某些条件,并在无界域上考虑问题时采用截断正则化方法,我们相信我们的结果提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信