具有非离散奇异集的Riemann曲面叶理

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Sahil Gehlawat
{"title":"具有非离散奇异集的Riemann曲面叶理","authors":"Sahil Gehlawat","doi":"10.1016/j.bulsci.2025.103743","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be a singular Riemann surface foliation on a complex manifold <em>M</em>, such that the singular set <span><math><mi>E</mi><mo>⊂</mo><mi>M</mi></math></span> is non-discrete. We study the behavior of the foliation near the singular set <em>E</em>, particularly focusing on singular points that admit invariant submanifolds (locally) passing through them. Our primary focus is on the singular points that are removable singularities for some proper subfoliation. The aim of this note is two-fold. First, we classify singular points based on the dimension of their invariant submanifold and, consequently, establish that for hyperbolic foliations <span><math><mi>F</mi></math></span>, the presence of such singularities ensures the continuity of the leafwise Poincaré metric on <span><math><mi>M</mi><mo>∖</mo><mi>E</mi></math></span>. Secondly, we look into the behavior of the leafwise Poincaré metric near the singular set. We prove that if a foliation is of transversal type in a sufficiently large set, then the modulus of uniformization map <em>η</em> is continuous on <em>M</em>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103743"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemann surface foliations with non-discrete singular set\",\"authors\":\"Sahil Gehlawat\",\"doi\":\"10.1016/j.bulsci.2025.103743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>F</mi></math></span> be a singular Riemann surface foliation on a complex manifold <em>M</em>, such that the singular set <span><math><mi>E</mi><mo>⊂</mo><mi>M</mi></math></span> is non-discrete. We study the behavior of the foliation near the singular set <em>E</em>, particularly focusing on singular points that admit invariant submanifolds (locally) passing through them. Our primary focus is on the singular points that are removable singularities for some proper subfoliation. The aim of this note is two-fold. First, we classify singular points based on the dimension of their invariant submanifold and, consequently, establish that for hyperbolic foliations <span><math><mi>F</mi></math></span>, the presence of such singularities ensures the continuity of the leafwise Poincaré metric on <span><math><mi>M</mi><mo>∖</mo><mi>E</mi></math></span>. Secondly, we look into the behavior of the leafwise Poincaré metric near the singular set. We prove that if a foliation is of transversal type in a sufficiently large set, then the modulus of uniformization map <em>η</em> is continuous on <em>M</em>.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103743\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001691\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001691","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设F是复流形M上的奇异黎曼曲面叶化,使得奇异集E∧M是非离散的。我们研究了奇异集E附近叶化的性质,特别关注了允许不变量子流形(局部)通过它们的奇异点。我们的主要焦点是奇异点,这些奇异点是一些适当亚叶的可移动奇异点。这篇文章的目的是双重的。首先,我们根据其不变子流形的维数对奇异点进行分类,并由此建立了对于双曲叶形F,这样的奇异点的存在保证了M∈E上叶向poincar度规的连续性。其次,我们研究了在奇异集附近叶向poincar度规的行为。证明了在一个足够大的集合上,如果一个叶理是横向型的,则均匀化映射η的模在M上是连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemann surface foliations with non-discrete singular set
Let F be a singular Riemann surface foliation on a complex manifold M, such that the singular set EM is non-discrete. We study the behavior of the foliation near the singular set E, particularly focusing on singular points that admit invariant submanifolds (locally) passing through them. Our primary focus is on the singular points that are removable singularities for some proper subfoliation. The aim of this note is two-fold. First, we classify singular points based on the dimension of their invariant submanifold and, consequently, establish that for hyperbolic foliations F, the presence of such singularities ensures the continuity of the leafwise Poincaré metric on ME. Secondly, we look into the behavior of the leafwise Poincaré metric near the singular set. We prove that if a foliation is of transversal type in a sufficiently large set, then the modulus of uniformization map η is continuous on M.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信