迹条件和共形矢量场下q孤子的表征

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Antonio W. Cunha , Antonio N. Silva Jr. , Rahul Poddar
{"title":"迹条件和共形矢量场下q孤子的表征","authors":"Antonio W. Cunha ,&nbsp;Antonio N. Silva Jr. ,&nbsp;Rahul Poddar","doi":"10.1016/j.bulsci.2025.103746","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate gradient <em>q</em>-solitons <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> characterized by a non-positive or non-negative trace of the structure tensor <em>q</em>. Through the imposition of specific regularity conditions on the potential function <em>f</em>, we deduce that <em>M</em> is both stationary and <em>q</em>-flat, consequently rendering it trivial. In the non-gradient case, we assume a contracted Bianchi type condition and prove certain characterizations of <em>q</em>-solitons <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> when the vector field <em>X</em> is conformal. Our results showcase versatility as we apply them to solitons associated with diverse geometric flows.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103746"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of q-solitons under trace conditions and conformal vector fields\",\"authors\":\"Antonio W. Cunha ,&nbsp;Antonio N. Silva Jr. ,&nbsp;Rahul Poddar\",\"doi\":\"10.1016/j.bulsci.2025.103746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate gradient <em>q</em>-solitons <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> characterized by a non-positive or non-negative trace of the structure tensor <em>q</em>. Through the imposition of specific regularity conditions on the potential function <em>f</em>, we deduce that <em>M</em> is both stationary and <em>q</em>-flat, consequently rendering it trivial. In the non-gradient case, we assume a contracted Bianchi type condition and prove certain characterizations of <em>q</em>-solitons <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> when the vector field <em>X</em> is conformal. Our results showcase versatility as we apply them to solitons associated with diverse geometric flows.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"206 \",\"pages\":\"Article 103746\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001721\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001721","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以结构张量q的非正或非负迹为特征的梯度q孤子(M,g,f)。通过对势函数f施加特定的正则性条件,我们推导出M既是平稳的又是q平坦的,从而使其平凡。在非梯度情况下,我们假设了一个压缩的Bianchi型条件,并证明了当向量场X为共形时q-孤子(M,g,X)的某些特征。我们的结果展示了多功能性,因为我们将它们应用于与不同几何流相关的孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of q-solitons under trace conditions and conformal vector fields
We investigate gradient q-solitons (M,g,f) characterized by a non-positive or non-negative trace of the structure tensor q. Through the imposition of specific regularity conditions on the potential function f, we deduce that M is both stationary and q-flat, consequently rendering it trivial. In the non-gradient case, we assume a contracted Bianchi type condition and prove certain characterizations of q-solitons (M,g,X) when the vector field X is conformal. Our results showcase versatility as we apply them to solitons associated with diverse geometric flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信