The relation type of analytic and formal algebras

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Maryam Akhavin, Abbas Nasrollah Nejad
{"title":"The relation type of analytic and formal algebras","authors":"Maryam Akhavin,&nbsp;Abbas Nasrollah Nejad","doi":"10.1016/j.bulsci.2025.103739","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the notion of relation types for analytic and formal <em>k</em>-algebras, extending a result by F. Planas-Vilanova to affine <em>k</em>-algebras. We establish the well-definedness and invariance of this notion by characterizing it in terms of André-Quillen homology and utilizing the Jacobi-Zariski long exact sequence of homology. In particular, we show that the relation type is an invariant of schemes of finite type over a field, analytic varieties, and algebroid varieties. We also provide a discussion and analysis of relation types for certain special varieties.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103739"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001654","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the notion of relation types for analytic and formal k-algebras, extending a result by F. Planas-Vilanova to affine k-algebras. We establish the well-definedness and invariance of this notion by characterizing it in terms of André-Quillen homology and utilizing the Jacobi-Zariski long exact sequence of homology. In particular, we show that the relation type is an invariant of schemes of finite type over a field, analytic varieties, and algebroid varieties. We also provide a discussion and analysis of relation types for certain special varieties.
解析代数和形式代数的关系类型
引入解析和形式k-代数关系类型的概念,将F. Planas-Vilanova的结果推广到仿射k-代数。我们用andr - quillen同调和Jacobi-Zariski长精确同调序列对其进行了刻画,证明了这一概念的确定性和不变性。特别地,我们证明了关系类型是域上有限型格式、解析变型和代数变型的不变量。对某些特殊品种的关系类型进行了讨论和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信