Levinson和Ky Fan不等式的加权多数化及其改进

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
JinYan Miao
{"title":"Levinson和Ky Fan不等式的加权多数化及其改进","authors":"JinYan Miao","doi":"10.1016/j.bulsci.2025.103722","DOIUrl":null,"url":null,"abstract":"<div><div>This article has four goals. First, integral majorization theory is largely generalized to several functions with different weights. Based on this tool, we improve Levinson inequality for 3-convex function, as consequences, some Ky Fan type inequalities can be unified and improved, 4-convex function can be slightly explored so that Ky Fan inequality is further refined under the view of higher-order convexity. Some more applications of the new majorization tool are also mentioned.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103722"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted majorization and improvements for Levinson and Ky Fan inequalities\",\"authors\":\"JinYan Miao\",\"doi\":\"10.1016/j.bulsci.2025.103722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article has four goals. First, integral majorization theory is largely generalized to several functions with different weights. Based on this tool, we improve Levinson inequality for 3-convex function, as consequences, some Ky Fan type inequalities can be unified and improved, 4-convex function can be slightly explored so that Ky Fan inequality is further refined under the view of higher-order convexity. Some more applications of the new majorization tool are also mentioned.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"206 \",\"pages\":\"Article 103722\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001484\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001484","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文有四个目标。首先,将积分多数化理论推广到若干不同权值的函数。在此基础上,我们改进了3-凸函数的Levinson不等式,从而对一些Ky Fan型不等式进行了统一和改进,对4-凸函数进行了稍微的探索,从而在高阶凸性的观点下进一步细化了Ky Fan不等式。文中还介绍了这种新型优化工具的其他一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted majorization and improvements for Levinson and Ky Fan inequalities
This article has four goals. First, integral majorization theory is largely generalized to several functions with different weights. Based on this tool, we improve Levinson inequality for 3-convex function, as consequences, some Ky Fan type inequalities can be unified and improved, 4-convex function can be slightly explored so that Ky Fan inequality is further refined under the view of higher-order convexity. Some more applications of the new majorization tool are also mentioned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信