Bulletin des Sciences Mathematiques最新文献

筛选
英文 中文
Invariant p-complements normalized by the fixed point subgroup 不动点子群归一化的不变p补
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-04 DOI: 10.1016/j.bulsci.2025.103635
Hangyang Meng , Xingyu Zhang
{"title":"Invariant p-complements normalized by the fixed point subgroup","authors":"Hangyang Meng ,&nbsp;Xingyu Zhang","doi":"10.1016/j.bulsci.2025.103635","DOIUrl":"10.1016/j.bulsci.2025.103635","url":null,"abstract":"<div><div>Let a group <em>A</em> act on a group <em>G</em> coprimely, i.e., <span><math><mo>(</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We say that <em>G</em> is <em>A</em>-<em>p</em>-nilpotent if <em>G</em> has an <em>A</em>-invariant <span><math><mi>Hall</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>-subgroup normalized by <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In this paper, we give some equivalent descriptions on <em>A</em>-<em>p</em>-nilpotence by analyzing the structure of minimal non-<em>A</em>-<em>p</em>-nilpotent groups. This is a follow-up work to A. Beltrán's research.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103635"},"PeriodicalIF":1.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143807280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence of strong solutions to the 3D incompressible magnetohydrodynamics equations with zero heat-conduction 三维零热传导不可压缩磁流体动力学方程强解的整体存在性
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-31 DOI: 10.1016/j.bulsci.2025.103625
Jinxia Liang , Xinqiu Zhang
{"title":"Global existence of strong solutions to the 3D incompressible magnetohydrodynamics equations with zero heat-conduction","authors":"Jinxia Liang ,&nbsp;Xinqiu Zhang","doi":"10.1016/j.bulsci.2025.103625","DOIUrl":"10.1016/j.bulsci.2025.103625","url":null,"abstract":"<div><div>In this paper, we study an initial-boundary value problem of three-dimensional inhomogeneous incompressible magnetohydrodynamics (MHD) fluids with vacuum, zero heat-conduction and density-temperature-dependent viscosity and magnetic diffusive coefficients. Based on the time-weighted a priori estimates, we establish the global existence and exponential decay properties of strong solutions under the conditions that the initial energy is suitably small.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103625"},"PeriodicalIF":1.3,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbations of a system of general functional equations in several variables 多变量一般泛函方程系统的微扰
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-31 DOI: 10.1016/j.bulsci.2025.103624
Hamid Khodaei
{"title":"Perturbations of a system of general functional equations in several variables","authors":"Hamid Khodaei","doi":"10.1016/j.bulsci.2025.103624","DOIUrl":"10.1016/j.bulsci.2025.103624","url":null,"abstract":"<div><div>Pólya and Szegő <span><span>[53, Teil I, Aufgabe 99]</span></span> proved that every approximate sequence of reals is near an additive sequence. Bourgin <span><span>[11]</span></span> showed that every approximate ring homomorphism from a Banach algebra onto a unital Banach algebra is necessarily a ring homomorphism. We deal with Pólya-Szegő's result for a general functional equation and a system of general functional equations in several variables. To do this, we shall use a different direct method from the previous studies. In consequence, Bourgin's result for approximate homomorphisms and Lie homomorphisms on Banach algebras are discussed. Several examples for comparison with previous studies are included.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103624"},"PeriodicalIF":1.3,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143768977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subnormal transcendental meromorphic solutions of delay differential equations 时滞微分方程的次正规超越亚纯解
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-27 DOI: 10.1016/j.bulsci.2025.103623
Mengting Xia, Jianren Long, Xuxu Xiang
{"title":"Subnormal transcendental meromorphic solutions of delay differential equations","authors":"Mengting Xia,&nbsp;Jianren Long,&nbsp;Xuxu Xiang","doi":"10.1016/j.bulsci.2025.103623","DOIUrl":"10.1016/j.bulsci.2025.103623","url":null,"abstract":"<div><div>The following two delay differential equations are studied,<span><span><span><math><mi>ω</mi><msup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><munderover><mo>∑</mo><mrow><mi>μ</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>e</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> and<span><span><span><math><mo>(</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span></div><div>where <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span> are integers, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><mo>.</mo><mo>.</mo><mo>.</mo></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> are nonzero complex numbers, <span><math><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><mo>.</mo><mo>.</mo><mo>.</mo></math></span>, <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> are small with respect to <em>ω</em>, <span><math><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span> is rational in <em>ω</em> with small meromorphic coefficients with respect to <em>ω</em>. The necessary conditions for the existence of subnormal transcendental meromorphic solutions of the above two equations are obtained, which extend the previous results from Cao, Chen and Korhonen <span><span>[2]</span></span>, Halburd and Korhonen <span><span>[6]</span></span>, Korhonen and Liu <span><span>[12]</span></span>. Some examples are given to support these results.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103623"},"PeriodicalIF":1.3,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Cesàro type operators between weighted Bergman spaces 加权伯格曼空间之间的加权Cesàro类型算子
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-27 DOI: 10.1016/j.bulsci.2025.103622
Petros Galanopoulos , Aristomenis G. Siskakis , Ruhan Zhao
{"title":"Weighted Cesàro type operators between weighted Bergman spaces","authors":"Petros Galanopoulos ,&nbsp;Aristomenis G. Siskakis ,&nbsp;Ruhan Zhao","doi":"10.1016/j.bulsci.2025.103622","DOIUrl":"10.1016/j.bulsci.2025.103622","url":null,"abstract":"<div><div>Let <span><math><mi>D</mi></math></span> be the open unit disk in the complex plane <span><math><mi>C</mi></math></span>. Let <em>μ</em> be a positive Borel measure on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. If <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is an analytic function in <span><math><mi>D</mi></math></span>, we consider for <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> the following weighted Cesàro type operator<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>!</mo><mspace></mspace><mi>Γ</mi><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mfrac><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <em>n</em>-th moment of <em>μ</em> given by <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><munder><mo>∫</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></munder><msup><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. We characterize boundedness of the weighted Cesàro type operator <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> from the weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>. Our method relies on a representation of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> as an integral operator with a kernel and a generalized Schur's test.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103622"},"PeriodicalIF":1.3,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On character variety of Anosov representations 论Anosov表示的字符变化
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-26 DOI: 10.1016/j.bulsci.2025.103621
Krishnendu Gongopadhyay, Tathagata Nayak
{"title":"On character variety of Anosov representations","authors":"Krishnendu Gongopadhyay,&nbsp;Tathagata Nayak","doi":"10.1016/j.bulsci.2025.103621","DOIUrl":"10.1016/j.bulsci.2025.103621","url":null,"abstract":"<div><div>Let Γ be the fundamental group of a <em>k</em>-punctured, <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, closed connected orientable surface of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>. We show that the character variety of the <span><math><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span>-Anosov irreducible representations, resp. the character variety of the <span><math><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span>-Anosov Zariski dense representations of Γ into <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, is a complex manifold of complex dimension <span><math><mo>(</mo><mn>2</mn><mi>g</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. For <span><math><mi>Γ</mi><mo>=</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span>, we also show that these character varieties are holomorphic symplectic manifolds.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103621"},"PeriodicalIF":1.3,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143760968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A q-congruence implying the Beukers–Van Hamme congruence q同余意味着Beukers-Van Hamme同余
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-21 DOI: 10.1016/j.bulsci.2025.103615
Victor J.W. Guo , Ji-Cai Liu
{"title":"A q-congruence implying the Beukers–Van Hamme congruence","authors":"Victor J.W. Guo ,&nbsp;Ji-Cai Liu","doi":"10.1016/j.bulsci.2025.103615","DOIUrl":"10.1016/j.bulsci.2025.103615","url":null,"abstract":"&lt;div&gt;&lt;div&gt;By making use of Andrews' terminating &lt;em&gt;q&lt;/em&gt;-analogue of Watson's formula and a double sum identity, we give a &lt;em&gt;q&lt;/em&gt;-analogue of the following congruence: for any prime &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;,&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;munderover&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; In view of the Chowla–Dwork–Evans congruence, our &lt;em&gt;q&lt;/em&gt;-congruence may somewhat be regarded as a &lt;em&gt;q&lt;/em&gt;-analogue of the Beukers–Van Hamme congruence:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;munderover&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103615"},"PeriodicalIF":1.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143682036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On global well-posedness, scattering and other properties for infinity energy solutions to the inhomogeneous NLS equation 非齐次NLS方程无穷能量解的全局适定性、散射和其他性质
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-20 DOI: 10.1016/j.bulsci.2025.103620
Roger P. de Moura, Mykael Cardoso, Gleison N. Santos
{"title":"On global well-posedness, scattering and other properties for infinity energy solutions to the inhomogeneous NLS equation","authors":"Roger P. de Moura,&nbsp;Mykael Cardoso,&nbsp;Gleison N. Santos","doi":"10.1016/j.bulsci.2025.103620","DOIUrl":"10.1016/j.bulsci.2025.103620","url":null,"abstract":"<div><div>In this work, we consider the inhomogeneous nonlinear Schrödinger (INLS) equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span><span><span><math><mrow><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>γ</mi><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>γ</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>, and <em>α</em> and <em>b</em> are positive numbers. Our main focus is to establish the global well-posedness of the INLS equation in Lorentz spaces for <span><math><mn>0</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>&lt;</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>b</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>. To achieve this, we use Strichartz estimates in Lorentz spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> combined with a fixed point argument. Working on Lorentz space setting instead the classical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> is motivated by the fact that the potential <span><math><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup></math></span> does not belong the usual <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-space. As a consequence of the ideas developed here on the global solution study we obtain some other properties for INLS, such as, existence of self-similar solutions, scattering, wave operators and asymptotic stability.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103620"},"PeriodicalIF":1.3,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143697012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some new Lucas sequence versions of Wolstenholme's congruence 一些新的卢卡斯序列版本的Wolstenholme的同余
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-19 DOI: 10.1016/j.bulsci.2025.103619
Yanteng Lu , Peng Yang , Tianxin Cai
{"title":"Some new Lucas sequence versions of Wolstenholme's congruence","authors":"Yanteng Lu ,&nbsp;Peng Yang ,&nbsp;Tianxin Cai","doi":"10.1016/j.bulsci.2025.103619","DOIUrl":"10.1016/j.bulsci.2025.103619","url":null,"abstract":"<div><div>In this paper, we extend the results of He, Mao, and Togbé, as well as Yang and Yang, and give some Lucas sequence versions generalizations of Wolstenholme's theorem with multiple harmonic sums.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103619"},"PeriodicalIF":1.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143686003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse bounds for maximal oscillatory rough singular integral operators 极大振荡粗糙奇异积分算子的稀疏界
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-18 DOI: 10.1016/j.bulsci.2025.103612
Surjeet Singh Choudhary , Saurabh Shrivastava , Kalachand Shuin
{"title":"Sparse bounds for maximal oscillatory rough singular integral operators","authors":"Surjeet Singh Choudhary ,&nbsp;Saurabh Shrivastava ,&nbsp;Kalachand Shuin","doi":"10.1016/j.bulsci.2025.103612","DOIUrl":"10.1016/j.bulsci.2025.103612","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we prove sparse bounds for the maximal oscillatory rough singular integral operator&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munder&gt;&lt;mi&gt;sup&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ι&lt;/mi&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is a real-valued polynomial on &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is a homogeneous function of degree zero with &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. This allows us to conclude weighted &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-estimates for the operator &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, the norm &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; depends only on the total degree of the polynomial &lt;span&gt;&lt;math&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, but not on the coefficients of &lt;span&gt;&lt;math&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Finally, we will show that these techniques also apply to obtain sparse bounds for oscillatory rough singular integral operator &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/spa","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103612"},"PeriodicalIF":1.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143682037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信