Approximation of Schrödinger operators with point interactions on bounded domains

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Diego Noja , Raffaele Scandone
{"title":"Approximation of Schrödinger operators with point interactions on bounded domains","authors":"Diego Noja ,&nbsp;Raffaele Scandone","doi":"10.1016/j.bulsci.2025.103671","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Schrödinger operators on a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, with homogeneous Robin or Dirichlet boundary conditions on ∂Ω and a point (zero-range) interaction placed at an interior point of Ω. We show that, under suitable spectral assumptions, and by means of an extension-restriction procedure which exploits the already known result on the entire space, the singular interaction is approximated by rescaled sequences of regular potentials. The result is missing in the literature, and we also take the opportunity to point out some general issues in the approximation of point interactions and the role of zero energy resonances.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103671"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000971","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Schrödinger operators on a bounded domain ΩR3, with homogeneous Robin or Dirichlet boundary conditions on ∂Ω and a point (zero-range) interaction placed at an interior point of Ω. We show that, under suitable spectral assumptions, and by means of an extension-restriction procedure which exploits the already known result on the entire space, the singular interaction is approximated by rescaled sequences of regular potentials. The result is missing in the literature, and we also take the opportunity to point out some general issues in the approximation of point interactions and the role of zero energy resonances.
有界域上具有点相互作用的Schrödinger算子的逼近
我们考虑有界域Ω∧R3上的Schrödinger算子,∂Ω上有齐次Robin或Dirichlet边界条件,并且在Ω的内部点有一个点(零距离)交互作用。我们证明,在适当的谱假设下,利用在整个空间上已知结果的扩展-限制过程,奇异相互作用可以用正则势的重标序列来近似。该结果在文献中是缺失的,我们也借此机会指出了点相互作用近似和零能量共振作用中的一些一般问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信