Explicit description of Christoffel deformations and Palm measures of the Plancherel measure, the z-measures and the Gamma process

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Pierre Lazag
{"title":"Explicit description of Christoffel deformations and Palm measures of the Plancherel measure, the z-measures and the Gamma process","authors":"Pierre Lazag","doi":"10.1016/j.bulsci.2025.103693","DOIUrl":null,"url":null,"abstract":"<div><div>The Christoffel deformation of a measure on the real line consists of multiplying this measure by a squared polynomial having its roots in <span><math><mi>R</mi></math></span>. We introduce Christoffel deformations of discrete orthogonal polynomial ensembles by considering the Christoffel deformations of the underlying measure, and prove that this construction extends to more general point processes describing distributions on partitions: the poissonized Plancherel measure and the <em>z</em>-measures. These deformations contain the theory of Palm measures, and as a consequence, we obtain explicit formulas for the Palm measures of the poissonized Plancherel measure and the <em>z</em>-measures in terms of discrete Wronskians in the relevant special functions. The extension to the Plancherel measure is obtained via a limit transition from the Charlier ensemble, while the extension to the <em>z</em>-measures follows from an analytic continuation argument. A limit procedure starting from the non-degenerate <em>z</em>-measures leads to a deformation of the Gamma process introduced by Borodin and Olshanski.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103693"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001198","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Christoffel deformation of a measure on the real line consists of multiplying this measure by a squared polynomial having its roots in R. We introduce Christoffel deformations of discrete orthogonal polynomial ensembles by considering the Christoffel deformations of the underlying measure, and prove that this construction extends to more general point processes describing distributions on partitions: the poissonized Plancherel measure and the z-measures. These deformations contain the theory of Palm measures, and as a consequence, we obtain explicit formulas for the Palm measures of the poissonized Plancherel measure and the z-measures in terms of discrete Wronskians in the relevant special functions. The extension to the Plancherel measure is obtained via a limit transition from the Charlier ensemble, while the extension to the z-measures follows from an analytic continuation argument. A limit procedure starting from the non-degenerate z-measures leads to a deformation of the Gamma process introduced by Borodin and Olshanski.
明确描述了Christoffel变形和Palm测量的Plancherel测量、z测量和Gamma过程
实数线上测度的Christoffel变形由将该测度乘以根在r中的平方多项式组成。我们通过考虑下一测度的Christoffel变形,引入离散正交多项式系综的Christoffel变形,并证明这种构造可以推广到描述分区上分布的更一般的点过程:泊松化Plancherel测度和z测度。这些变形包含了Palm测度的理论,因此,我们得到了泊松化Plancherel测度的Palm测度和相关特殊函数中离散朗斯基量的z测度的显式公式。Plancherel测度的扩展是通过Charlier系综的极限跃迁得到的,而z测度的扩展则是通过解析延拓论证得到的。从非简并z测度出发的极限过程导致了由Borodin和Olshanski引入的Gamma过程的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信