{"title":"群表示的不变量,维/度对偶和向量场的正规形式","authors":"Ewa Stróżyna , Henryk Żoła̧dek","doi":"10.1016/j.bulsci.2025.103685","DOIUrl":null,"url":null,"abstract":"<div><div>We develop an analytic approach to the problem of polynomial first integrals for linear vector fields. As an application we obtain a new proof of the theorem of Maurer and Wietzenböck about finiteness of the number of generators of the ring of constants of a linear derivation in the polynomial ring.</div><div>In the case of linear nilpotent vector field <strong><em>X</em></strong> with one Jordan cell we deal with an irreducible representation Sym<span><math><mmultiscripts><mrow><mi>V</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>n</mi></mrow></mmultiscripts></math></span>, <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, of the Lie algebra <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>2</mn><mo>)</mo></math></span>. The homogeneous polynomial first integrals of <strong><em>X</em></strong> of degree <em>d</em> correspond to highest weight vectors in the representation Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>d</mi></mrow></mmultiscripts></math></span>. We present a generating function for the multiplicities of the splitting of the latter representation into irreducible ones.</div><div>The dim/deg duality is an isomorphism Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>d</mi></mrow></mmultiscripts><mo>≃</mo></math></span> Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>n</mi></mrow></mmultiscripts></math></span>. We give a functional analytic construction of the duality map.</div><div>Using a transvectant formula we obtain a new relation for the elementary symmetric polynomials.</div><div>Finally, we propose an alternative approach to the analyticity property of the normal form reduction of a germ of vector field with nilpotent linear part in a case considered by Stolovich and Verstringe.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103685"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariants of group representations, dimension/degree duality and normal forms of vector fields\",\"authors\":\"Ewa Stróżyna , Henryk Żoła̧dek\",\"doi\":\"10.1016/j.bulsci.2025.103685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop an analytic approach to the problem of polynomial first integrals for linear vector fields. As an application we obtain a new proof of the theorem of Maurer and Wietzenböck about finiteness of the number of generators of the ring of constants of a linear derivation in the polynomial ring.</div><div>In the case of linear nilpotent vector field <strong><em>X</em></strong> with one Jordan cell we deal with an irreducible representation Sym<span><math><mmultiscripts><mrow><mi>V</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>n</mi></mrow></mmultiscripts></math></span>, <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, of the Lie algebra <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>2</mn><mo>)</mo></math></span>. The homogeneous polynomial first integrals of <strong><em>X</em></strong> of degree <em>d</em> correspond to highest weight vectors in the representation Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>d</mi></mrow></mmultiscripts></math></span>. We present a generating function for the multiplicities of the splitting of the latter representation into irreducible ones.</div><div>The dim/deg duality is an isomorphism Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>d</mi></mrow></mmultiscripts><mo>≃</mo></math></span> Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>n</mi></mrow></mmultiscripts></math></span>. We give a functional analytic construction of the duality map.</div><div>Using a transvectant formula we obtain a new relation for the elementary symmetric polynomials.</div><div>Finally, we propose an alternative approach to the analyticity property of the normal form reduction of a germ of vector field with nilpotent linear part in a case considered by Stolovich and Verstringe.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103685\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001113\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Invariants of group representations, dimension/degree duality and normal forms of vector fields
We develop an analytic approach to the problem of polynomial first integrals for linear vector fields. As an application we obtain a new proof of the theorem of Maurer and Wietzenböck about finiteness of the number of generators of the ring of constants of a linear derivation in the polynomial ring.
In the case of linear nilpotent vector field X with one Jordan cell we deal with an irreducible representation Sym, , of the Lie algebra . The homogeneous polynomial first integrals of X of degree d correspond to highest weight vectors in the representation Sym. We present a generating function for the multiplicities of the splitting of the latter representation into irreducible ones.
The dim/deg duality is an isomorphism Sym Sym. We give a functional analytic construction of the duality map.
Using a transvectant formula we obtain a new relation for the elementary symmetric polynomials.
Finally, we propose an alternative approach to the analyticity property of the normal form reduction of a germ of vector field with nilpotent linear part in a case considered by Stolovich and Verstringe.