群表示的不变量,维/度对偶和向量场的正规形式

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Ewa Stróżyna , Henryk Żoła̧dek
{"title":"群表示的不变量,维/度对偶和向量场的正规形式","authors":"Ewa Stróżyna ,&nbsp;Henryk Żoła̧dek","doi":"10.1016/j.bulsci.2025.103685","DOIUrl":null,"url":null,"abstract":"<div><div>We develop an analytic approach to the problem of polynomial first integrals for linear vector fields. As an application we obtain a new proof of the theorem of Maurer and Wietzenböck about finiteness of the number of generators of the ring of constants of a linear derivation in the polynomial ring.</div><div>In the case of linear nilpotent vector field <strong><em>X</em></strong> with one Jordan cell we deal with an irreducible representation Sym<span><math><mmultiscripts><mrow><mi>V</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>n</mi></mrow></mmultiscripts></math></span>, <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, of the Lie algebra <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>2</mn><mo>)</mo></math></span>. The homogeneous polynomial first integrals of <strong><em>X</em></strong> of degree <em>d</em> correspond to highest weight vectors in the representation Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>d</mi></mrow></mmultiscripts></math></span>. We present a generating function for the multiplicities of the splitting of the latter representation into irreducible ones.</div><div>The dim/deg duality is an isomorphism Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>d</mi></mrow></mmultiscripts><mo>≃</mo></math></span> Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>n</mi></mrow></mmultiscripts></math></span>. We give a functional analytic construction of the duality map.</div><div>Using a transvectant formula we obtain a new relation for the elementary symmetric polynomials.</div><div>Finally, we propose an alternative approach to the analyticity property of the normal form reduction of a germ of vector field with nilpotent linear part in a case considered by Stolovich and Verstringe.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103685"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariants of group representations, dimension/degree duality and normal forms of vector fields\",\"authors\":\"Ewa Stróżyna ,&nbsp;Henryk Żoła̧dek\",\"doi\":\"10.1016/j.bulsci.2025.103685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop an analytic approach to the problem of polynomial first integrals for linear vector fields. As an application we obtain a new proof of the theorem of Maurer and Wietzenböck about finiteness of the number of generators of the ring of constants of a linear derivation in the polynomial ring.</div><div>In the case of linear nilpotent vector field <strong><em>X</em></strong> with one Jordan cell we deal with an irreducible representation Sym<span><math><mmultiscripts><mrow><mi>V</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>n</mi></mrow></mmultiscripts></math></span>, <span><math><mi>V</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, of the Lie algebra <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>2</mn><mo>)</mo></math></span>. The homogeneous polynomial first integrals of <strong><em>X</em></strong> of degree <em>d</em> correspond to highest weight vectors in the representation Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>d</mi></mrow></mmultiscripts></math></span>. We present a generating function for the multiplicities of the splitting of the latter representation into irreducible ones.</div><div>The dim/deg duality is an isomorphism Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>d</mi></mrow></mmultiscripts><mo>≃</mo></math></span> Sym<span><math><mmultiscripts><mrow><mo>(</mo><msup><mrow><mi>Sym</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>V</mi><mo>)</mo></mrow><mprescripts></mprescripts><none></none><mrow><mi>n</mi></mrow></mmultiscripts></math></span>. We give a functional analytic construction of the duality map.</div><div>Using a transvectant formula we obtain a new relation for the elementary symmetric polynomials.</div><div>Finally, we propose an alternative approach to the analyticity property of the normal form reduction of a germ of vector field with nilpotent linear part in a case considered by Stolovich and Verstringe.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103685\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001113\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了线性向量场多项式第一积分问题的解析方法。作为应用,我们得到了Maurer定理和Wietzenböck关于多项式环中线性导数的常数环的生成子数目有限的一个新的证明。在线性幂零向量场X具有一个Jordan单元的情况下,我们处理李代数sl(2)的不可约表示SymVn, V=C2。d次的齐次多项式X的第一次积分对应于表示Sym(SymnV)d中的最高权向量。我们给出了后一种表示分解成不可约表示的多重性的生成函数。dim/deg二象性是一个同构现象,即Sym(SymnV)d≃Sym(SymdV)n。给出了对偶映射的一个泛函解析构造。利用一个透物公式,得到了初等对称多项式的一个新的关系式。最后,在Stolovich和Verstringe考虑的情况下,我们提出了一种替代的方法来解释具有幂零线性部分的向量场的正规约简的可解析性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariants of group representations, dimension/degree duality and normal forms of vector fields
We develop an analytic approach to the problem of polynomial first integrals for linear vector fields. As an application we obtain a new proof of the theorem of Maurer and Wietzenböck about finiteness of the number of generators of the ring of constants of a linear derivation in the polynomial ring.
In the case of linear nilpotent vector field X with one Jordan cell we deal with an irreducible representation SymVn, V=C2, of the Lie algebra sl(2). The homogeneous polynomial first integrals of X of degree d correspond to highest weight vectors in the representation Sym(SymnV)d. We present a generating function for the multiplicities of the splitting of the latter representation into irreducible ones.
The dim/deg duality is an isomorphism Sym(SymnV)d Sym(SymdV)n. We give a functional analytic construction of the duality map.
Using a transvectant formula we obtain a new relation for the elementary symmetric polynomials.
Finally, we propose an alternative approach to the analyticity property of the normal form reduction of a germ of vector field with nilpotent linear part in a case considered by Stolovich and Verstringe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信