{"title":"非平凡多变量多项式零点的豪斯多夫测度","authors":"Andrew Murdza, Khai T. Nguyen, Etienne Phillips","doi":"10.1016/j.bulsci.2025.103681","DOIUrl":null,"url":null,"abstract":"<div><div>This paper establishes a sharp universal bound on the <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional Hausdorff measure of the zero level set of any nontrivial multivariable polynomial <span><math><mi>p</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> within <em>d</em>-dimensional cubes of size <em>r</em>. The bound depends only on the cube size <em>r</em>, the dimension <em>d</em>, and the degrees of the polynomial <em>p</em>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103681"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff measure of zeros of nontrivial multivariable polynomials\",\"authors\":\"Andrew Murdza, Khai T. Nguyen, Etienne Phillips\",\"doi\":\"10.1016/j.bulsci.2025.103681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper establishes a sharp universal bound on the <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional Hausdorff measure of the zero level set of any nontrivial multivariable polynomial <span><math><mi>p</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> within <em>d</em>-dimensional cubes of size <em>r</em>. The bound depends only on the cube size <em>r</em>, the dimension <em>d</em>, and the degrees of the polynomial <em>p</em>.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"204 \",\"pages\":\"Article 103681\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001071\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Hausdorff measure of zeros of nontrivial multivariable polynomials
This paper establishes a sharp universal bound on the -dimensional Hausdorff measure of the zero level set of any nontrivial multivariable polynomial within d-dimensional cubes of size r. The bound depends only on the cube size r, the dimension d, and the degrees of the polynomial p.